5,655 research outputs found
Inflating and deflating the self: Sustaining motivational concerns through self-evaluation
The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jesp.2013.11.008 © 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The ways in which individuals think and feel about themselves play a significant role in guiding behavior across many domains in life. The current studies investigate how individuals may shift the positivity of self-evaluations in order to sustain their chronic or momentary motivational concerns. Specifically, we propose that more positive self-evaluations support eagerness that sustains promotion-focused concerns with advancement, whereas less positive self-evaluations support vigilance that sustains prevention-focused concerns with safety. The current studies provide evidence that self-evaluation inflation is associated with promotion concerns whereas self-evaluation deflation is associated with prevention concerns, whether regulatory focus is situationally manipulated (Studies 1, 2b, and 3) or measured as a chronic individual difference (Study 2a). Following regulatory focus primes, individuals in a promotion focus showed relatively greater accessibility of positive versus negative self-knowledge compared to individuals in a prevention focus (Study 1). In an ongoing performance situation, participants in a promotion focus reported higher self-esteem than participants in a prevention focus (Studies 2a and 2b). Finally, individuals in a promotion focus persisted longer on an anagram task when given an opportunity to focus on their strengths versus weaknesses, which was not the case for individuals in a prevention focus (Study 3). Across studies, the predicted interactions were consistently obtained, although sometimes the effects were stronger for promotion or prevention motivation. We discuss implications for existing models of the motives underlying self-evaluation.National Institute of Mental Health [grant 39429] to E. Tory HigginsSocial Sciences and Humanities Research Council of Canada (SSHRC) Insight Grant to Abigail A. Schole
Ionization States and Plasma Structures of Mixed-morphology SNRs Observed with ASCA
We present the results of a systematic study using ASCA of the ionization
state for six ``mixed-morphology'' supernova emnants (MMSNRs): IC 443, W49B,
W28, W44, 3C391, and Kes 27. MMSNRs show centrally filled thermal X-ray
emission, which contrasts to shell-like radio morphology, a set of
haracteristics at odds with the standard model of SNR evolution (e.g., the
Sedov model). We have therefore studied the evolution of the MMSNRs from the
ionization conditions inferred from the X-ray spectra, independent of X-ray
morphology. We find highly ionized plasmas approaching ionization equilibrium
in all the mmsnrs. The degree of ionization is systematically higher than the
plasma usually seen in shell-like SNRs. Radial temperature gradients are also
observed in five remnants, with cooler plasma toward the limb. In IC 443 and
W49B, we find a plasma structure consistent with shell-like SNRs, suggesting
that at least some MMSNRs have experienced similar evolution to shell-like
SNRs. In addition to the results above, we have discovered an ``overionized''
ionization state in W49B, in addition to that previously found in IC 443.
Thermal conduction can cause the hot interior plasma to become overionized by
reducing the temperature and density gradients, leading to an interior density
increase and temperature decrease. Therefore, we suggest that the
``center-filled'' X-ray morphology develops as the result of thermal
conduction, and should arise in all SNRs. This is consistent with the results
that MMSNRs are near collisional ionization equilibrium since the conduction
timescale is roughly similar to the ionization timescale. Hence, we conclude
that MMSNRs are those that have evolved over yr. We call this phase
as the ``conduction phase.''Comment: 34 pages, 20 figures, 9 tables, accepted for publication in The
Astrophysical Journa
Vector meson radiation in relativistic heavy-ion collisions
The sigma-omega model in mean-field approximation where the meson fields are
treated classically, describes much of observed nuclear structure and has been
employed to describe the nuclear equation of state up to the quark-gluon phase
transition. The acceleration of the meson sources, for example, in relativistic
heavy-ion collisions, should result in bremsstrahlung-like radiation of the
meson fields. The many mesons emitted serve to justify the use of classical
meson fields. The slowing of the nuclei during the collision is modeled here as
a smooth transition from initial to final velocity. Under ultra-relativistic
conditions, vector radiation dominates. The angular distribution of energy flux
shows a characteristic shape. It appears that if the vector meson field couples
to the conserved baryon current, independent of the baryonic degrees of
freedom, this mechanism will contribute to the radiation seen in relativistic
heavy-ion collisions. The possible influence of the quark-gluon plasma is also
considered.Comment: 17 pages, 4 postscript figures. Uses elsart.sty and psfig.sty.
Improved motivation and typographical corrections. Accepted for publication
by Nuclear Physics
Polar type density of states in non-unitary odd-parity superconducting states of gap with point nodes
It is shown that the density of states (DOS) proportional to the excitation
energy, the so-called polar like DOS, can arise in the odd-parity states with
the superconducting gap vanishing at points even if the spin-orbit interaction
for Cooper pairing is strong enough. Such gap stuructures are realized in the
non-unitary states, F_{1u}(1,i,0), F_{1u}(1,varepsilon,varepsilon^{2}), and
F_{2u}(1,i,0), classified by Volovik and Gorkov, Sov. Phys.-JETP Vol.61 (1985)
843. This is due to the fact that the gap vanishes in quadratic manner around
the point on the Fermi surface. It is also shown that the region of quadratic
energy dependence of DOS, in the state F_{2u}(1,varepsilon,varepsilon^{2}), is
restricted in very small energy region making it difficult to distinguish from
the polar-like DOS.Comment: 5 pages, 3 figures, submitted to J. Phys.: Condens. Matter Lette
Perpendicular and tangential angularly resolved multi-sight neutral particle analyzer system in LHD
The particle loss in a helical plasma can be found by measuring the angular distribution of the energetic neutral particles using the angularly resolved multi-sightline neutral particle analyzer (ARMS). In ARMS, the AXUV detector with 20 segments usually used as UV monitor is utilized as the particle detector. Two ARMSs, which are installed with perpendicular and tangential views are operated for measuring the real time neutral particle distribution and investigating the particle loss
Efficient Recursion Method for Inverting Overlap Matrix
A new O(N) algorithm based on a recursion method, in which the computational
effort is proportional to the number of atoms N, is presented for calculating
the inverse of an overlap matrix which is needed in electronic structure
calculations with the the non-orthogonal localized basis set. This efficient
inverting method can be incorporated in several O(N) methods for
diagonalization of a generalized secular equation. By studying convergence
properties of the 1-norm of an error matrix for diamond and fcc Al, this method
is compared to three other O(N) methods (the divide method, Taylor expansion
method, and Hotelling's method) with regard to computational accuracy and
efficiency within the density functional theory. The test calculations show
that the new method is about one-hundred times faster than the divide method in
computational time to achieve the same convergence for both diamond and fcc Al,
while the Taylor expansion method and Hotelling's method suffer from numerical
instabilities in most cases.Comment: 17 pages and 4 figure
Large magnetoresistance at room-temperature in semiconducting polymer sandwich devices
We report on the discovery of a large, room temperature magnetoresistance
(MR) effect in polyfluorene sandwich devices in weak magnetic fields. We
characterize this effect and discuss its dependence on voltage, temperature,
film thickness, electrode materials, and (unintentional) impurity
concentration. We usually observed negative MR, but positive MR can also be
achieved under high applied electric fields. The MR effect reaches up to 10% at
fields of 10mT at room temperature. The effect shows only a weak temperature
dependence and is independent of the sign and direction of the magnetic field.
We find that the effect is related to the hole current in the devices.Comment: 3 pages, 4 figure
Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod — possible control of iron sulfide biomineralization by the animal
A gastropod from a deep-sea hydrothermal field at the Rodriguez triple junction, Indian Ocean, has scale-shaped structures, called sclerites, mineralized with iron sulfides on its foot. No other organisms are known to produce a skeleton consisting of iron sulfides. To investigate whether iron sulfide mineralization is mediated by the gastropod for the function of the sclerites, we performed a detailed physical and chemical characterization. Nanostructural characterization of the iron sulfide sclerites reveals that the iron sulfide minerals pyrite (FeS2) and greigite (Fe3S4) form with unique crystal habits inside and outside of the organic matrix, respectively. The magnetic properties of the sclerites, which are mostly consistent with those predicted from their nanostructual features, are not optimized for magnetoreception and instead support use of the magnetic minerals as structural elements. The mechanical performance of the sclerites is superior to that of other biominerals used in the vent environment for predation as well as protection from predation. These characteristics, as well as the co-occurrence of brachyuran crabs, support the inference that the mineralization of iron sulfides might be controlled by the gastropod to harden the sclerites for protection from predators. Sulfur and iron isotopic analyses indicate that sulfur and iron in the sclerites originate from hydrothermal fluids rather than from bacterial metabolites, and that iron supply is unlikely to be regulated by the gastropod for iron sulfide mineralization. We propose that the gastropod may control iron sulfide mineralization by modulating the internal concentrations of reduced sulfur compounds
Paracrine Effect of NRG1 and HGF Drives Resistance to MEK Inhibitors in Metastatic Uveal Melanoma.
Uveal melanoma patients with metastatic disease usually die within one year, emphasizing an urgent need to develop new treatment strategies for this cancer. MEK inhibitors improve survival in cutaneous melanoma patients but show only modest efficacy in metastatic uveal melanoma patients. In this study, we screened for growth factors that elicited resistance in newly characterized metastatic uveal melanoma cell lines to clinical-grade MEK inhibitors, trametinib and selumetinib. We show that neuregulin 1 (NRG1) and hepatocyte growth factor (HGF) provide resistance to MEK inhibition. Mechanistically, trametinib enhances the responsiveness to NRG1 and sustained HGF-mediated activation of AKT. Individually targeting ERBB3 and cMET, the receptors for NRG1 and HGF, respectively, overcome resistance to trametinib provided by these growth factors and by conditioned medium from fibroblasts that produce NRG1 and HGF. Inhibition of AKT also effectively reverses the protective effect of NRG1 and HGF in trametinib-treated cells. Uveal melanoma xenografts growing in the liver in vivo and a subset of liver metastases of uveal melanoma patients express activated forms of ERBB2 (the coreceptor for ERBB3) and cMET. Together, these results provide preclinical evidence for the use of MEK inhibitors in combination with clinical-grade anti-ERBB3 or anti-cMET monoclonal antibodies in metastatic uveal melanoma
ASCA Observations of the Supernova Remnant IC 443: Thermal Structure and Detection of Overionized Plasma
We present the results of X-ray spatial and spectral studies of the
``mixed-morphology'' supernova remnant IC 443 using ASCA. IC 443 has a
center-filled image in X-ray band, contrasting with the shell-like appearance
in radio and optical bands. The overall X-ray emission is thermal, not from a
synchrotron nebula. ASCA observed IC 443 three times, covering the whole
remnant. From the image analysis, we found that the softness-ratio map reveals
a shell-like structure. At the same time, its spectra require two (1.0 keV and
0.2 keV) plasma components; the emission of the 0.2 keV plasma is stronger in
the region near the shell than the center. These results can be explained by a
simple model that IC 443 has a hot (1.0 keV) interior surrounded by a cool (0.2
keV) outer shell. From the emission measures, we infer that the 0.2 keV plasma
is denser than the 1.0 keV plasma, suggesting pressure equilibrium between the
two. In addition, we found that the ionization temperature of sulfur, obtained
from H-like K to He-like K intensity ratio, is 1.5 keV,
significantly higher than the gas temperature of 1.0 keV suggested from the
continuum spectrum. The same can be concluded for silicon. Neither an
additional, hotter plasma component nor a multi-temperature plasma successfully
accounts for this ratio, and we conclude that the 1.0 keV plasma is
overionized. This is the first time that overionized gas has been detected in a
SNR. For the gas to become overionized in the absence of a photoionizing flux,
it must cool faster than the ions recombine. Thermal conduction from the 1.0
keV plasma to the 0.2 keV one could cause the 1.0 keV plasma to become
overionized, which is plausible within an old (3 yr) SNR.Comment: 11 pages, 15 figures, 2 tables, accepted for publication in The
Astrophysical Journa
- …
