111 research outputs found

    Comparison of conventional and CT-based planning for intracavitary brachytherapy for cervical cancer: target volume coverage and organs at risk doses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare intracavitary brachytherapy (ICBT) planning methods for cervical cancer, based on either orthogonal radiographs (conventional plan) or CT sections (CT plan); the comparison focused on target volume coverage and dose volume analysis of organs at risk (OARs), by representing point doses defined by the International Commission on Radiation Units and Measurement (ICRU) and dose volume histograms (DVHs) from 3D planning.</p> <p>Methods</p> <p>We analyzed the dosimetric data for 62 conventional and CT-based ICBT plans. The gross tumor volume (GTV), clinical target volume (CTV) and organs at risk (OAR)s were contoured on the CT-plan. Point A and ICRU 38 rectal and bladder points were defined on reconstructed CT images.</p> <p>Results</p> <p>Patients were categorized on the basis of whether the >95% isodose line of the point-A prescription dose encompassed the CTV (group 1, n = 24) or not (group 2, n = 38). The mean GTV and CTV (8.1 cc and 20.6 cc) were smaller in group 1 than in group 2 (24.7 cc and 48.4 cc) (<it>P <</it>0.001). The mean percentage of GTV and CTV coverage with the 7 Gy isodose was 93.1% and 88.2% for all patients, and decreased with increasing tumor size and stage. The mean D2 and D5 rectum doses were 1.66 and 1.42 times higher than the corresponding ICRU point doses and the mean D2 and D5 bladder doses were 1.51 and 1.28 times higher. The differences between the ICRU dose and the D2 and D5 doses were significantly higher in group 2 than in group 1 for the bladder, but not for the rectum.</p> <p>Conclusion</p> <p>The CT-plan is superior to the conventional plan in target volume coverage and appropriate evaluation of OARs, as the conventional plan overestimates tumor doses and underestimates OAR doses.</p

    Energetics and stability of discrete charge distribution on a conducting disk

    No full text
    We have investigated the energetics and stability of discrete charge distribution on a thin conducting disk. We have seen that the equal point charges distribute themselves on the disk according to certain rules. It has been found that discrete charge distribution shows different characteristics than continuous charge distribution from energetics point of view. Nevertheless, far large number of charges these different characteristics tend to be identical. (C) 2001 Elsevier Science B.V All rights reserved

    Distribution of point charges on a thin conducting disk

    No full text
    We investigate the minimum energy configuration of N equal point charges interacting via the Coulomb potential 1/r, and placed on an infinitely thin conducting disk. By minimizing total interaction Energy, we obtain numerically the minimum energy configurations from which the rules for the distribution of charges on the disk are obtained

    Titanium coverage on a single-wall carbon nanotube: Molecular dynamics simulations

    No full text
    The minimum energy structures of titanium covered finite-length C(8,0) singlewall carbon nanotubes (SWNT) have been investigated. We first parameterized an empirical potential energy function (PEF) for the CTi system. The PEF used in the calculations includes two- and three-body atomic interactions. Then, performing molecular dynamics simulations, we obtained the minimum-energy configurations for titanium covered SWNTs. The reported configurations include low and high coverage of Ti on SWNTs. We saw that one layer of Ti did not distort the nanotube significantly, whereas two-layer coverage showed an interesting feature: the second layer of Ti pushed the first layer inside the wall, but the general shape of the nanotube was not affected so much

    Structural and electronic properties of AlkTilNim microclusters: Density-functional-theory calculations

    No full text
    Structural and electronic properties of AlkTilNim(k+l+m=2,3) microclusters have been investigated by performing density-functional-theory calculations within the effective core potential level. Dimers and trimers of the elements aluminum, titanium, and nickel, and their binary and ternary combinations have been studied in their ground states. The optimum geometries, possible dissociation channels, vibrational properties, and electronic structure of the clusters under study are obtained

    Energetics and stability of discrete charge distribution on the surface of a sphere

    No full text
    We have investigated the minimum-energy distribution of N, 3 ≤ N ≤ 97, equal point charges confined to the surface of a sphere. Charges interact with each other via the Coulomb potential of the form 1/r. Minimum-energy distributions have been determined by minimizing the tangential forces on each charge. Further numerical evidence shows that in the minimum-energy state of N charges on the sphere, it is not possible to place a charge at the geometrical center. Besides, it has been found that the most and reliable information about the relative stability properties of the distributions can be obtained with the help of second difference energy consideration

    Rules for the distribution of point charges on a conducting disk

    No full text
    The minimum energy configurations of N equal point charges interacting via the Coulomb potential on an infinitely thin conducting disk are determined and the rules for the distribution of charges on the disk are deduced
    corecore