2 research outputs found

    Human gut metatranscriptome changes induced by a fermented milk product are associated with improved tolerance to a flatulogenic diet

    Get PDF
    Healthy plant-based diets rich in fermentable residues may induce gas-related symptoms, possibly mediated by the gut microbiota. We previously showed that consumption of a fermented milk product (FMP) containing Bifidobacterium animalis subsp. lactis CNCM I-2494 and lactic acid bacteria improved gastrointestinal (GI) comfort in response to a flatulogenic dietary challenge in healthy individuals. To study the effects of the FMP on gut microbiota activity from those participants, we conducted a metatranscriptomic analysis of fecal samples (n = 262), which were collected during the ingestion of a habitual diet and two series of a 3-day high-residue challenge diet, before and following 28-days of FMP consumption. Most of the FMP species were detected or found enriched upon consumption of the product. FMP mitigated the effect of a flatulogenic diet on gas-related symptoms in several ways. First, FMP consumption was associated with the depletion of gas-producing bacteria and increased hydrogen to methane conversion. It also led to the upregulation of activities such as replication and downregulation of functions related to motility and chemotaxis. Furthermore, upon FMP intake, metabolic activities such as carbohydrate metabolism, attributed to B. animalis and S. thermophilus, were enriched; these activities were coincidentally found to be negatively associated with several GI symptoms. Finally, a more connected microbial ecosystem or mutualistic relationship among microbes was found in responders to the FMP intervention. Taken together, these findings suggest that consumption of the FMP improved the tolerance of a flatulogenic diet through active interactions with the resident gut microbiota.This research was supported by a grant from Danone Nutricia Research. Danone Nutricia Research authors participated in the study design, interpretation of the data and in the writing of the report. Francisca Yáñez was supported by a fellowship from ANID, BECAS Chile, No. 72190278. Zixuan Xie received a fellowship from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Action, Innovative Training Network: FunHoMic; grant number 812969. CIBERHED is funded by the Instituto de Salud Carlos III

    Dysbiosis and relapse-related microbiome in inflammatory bowel disease: A shotgun metagenomic approach

    Get PDF
    © 2021 The Author(s).Crohn’s disease (CD) and ulcerative colitis (UC), the two main forms of inflammatory bowel disease (IBD), affect several million people worldwide. CD and UC are characterized by periods of clinical remission and relapse. Although IBD patients present chronic alterations of the gut microbiome, called dysbiosis, little attention has been devoted to the relapse-related microbiome. To address this gap, we generated shotgun metagenomic data from the stools of two European cohorts—134 Spanish (followed up for one year) and 49 Belgian (followed up for 6 months) subjects—to characterize the microbial taxonomic and metabolic profiles present. To assess the predictive value of microbiome data, we added the taxonomic profiles generated from a previous study of 130 Americans. Our results revealed that CD was more dysbiotic than UC compared to healthy controls (HC) and that strategies for energy extraction and propionate production were different in CD compared to UC and HC. Remarkably, CD and UC relapses were not associated with alpha- or beta-diversity, or with a dysbiotic score. However, CD relapse was linked to alterations at the species and metabolic pathway levels, including those involved in propionate production. The random forest method using taxonomic profiles allowed the prediction of CD vs. non-CD with an AUC = 0.938, UC vs. HC with an AUC = 0.646, and CD relapse vs. remission with an AUC = 0.769. Our study validates previous taxonomic findings, points to different relapse-related growth and defence mechanisms in CD compared to UC and HC and provides biomarkers to discriminate IBD subtypes and predict disease activity.This study was supported by the Instituto de Salud Carlos III /FEDER, a government agency (grant numbers: PI17/00614; PI20/00130), and by the Crohn’s & Colitis Foundation of America (Award ID: 514634)
    corecore