86 research outputs found

    Brief Report: Safety and Antitumor Activity of Alectinib Plus Atezolizumab From a Phase 1b Study in Advanced ALK-Positive NSCLC

    Get PDF
    INTRODUCTION: Alectinib is a preferred first-line treatment option for advanced ALK-positive NSCLC. Combination regimens of alectinib with immune checkpoint inhibitors are being evaluated for synergistic effects. METHODS: Adults with treatment-naive, stage IIIB/IV, or recurrent ALK-positive NSCLC were enrolled into a two-stage phase 1b study. Patients received alectinib 600 mg (twice daily during cycle 1 and throughout each 21-d cycle thereafter) plus atezolizumab 1200 mg (d8 of cycle 1 and then d1 of each 21-d cycle). Primary objectives were to evaluate safety and tolerability of alectinib plus atezolizumab. Secondary objectives included assessments of antitumor activity. RESULTS: In total, 21 patients received more than or equal to 1 dose of alectinib or atezolizumab. As no dose-limiting toxicities were observed in stage 1 (n = 7), the starting dose and schedule were continued into stage 2 (n = 14). Median duration of follow-up was 29 months (range: 1-39). Grade 3 treatment-related adverse events occurred in 57% of the patients, most often rash (19%). No grade 4 or 5 treatment-related adverse events were reported. Confirmed objective response rate was 86% (18 of 21; 95% confidence interval [CI]: 64-97). Median progression-free survival was not estimable (NE) (95% CI: 13 mo-NE), neither was median overall survival (95% CI: 33 mo-NE). CONCLUSIONS: The combination of alectinib and atezolizumab is feasible, but increased toxicity was found compared with the individual agents. With small sample sizes and relatively short follow-up, definitive conclusions regarding antitumor activity cannot be made

    Prognostic Impact of KRAS Mutation Subtypes in 677 Patients with Metastatic Lung Adenocarcinomas

    Get PDF
    BackgroundWe previously demonstrated that patients with metastatic KRAS mutant lung cancers have a shorter survival compared with patients with KRAS wild-type cancers. Recent reports have suggested different clinical outcomes and distinct activated signaling pathways depending on KRAS mutation subtype. To better understand the impact of KRAS mutation subtype, we analyzed data from 677 patients with KRAS mutant metastatic lung cancer.MethodsWe reviewed all patients with metastatic or recurrent lung cancers found to have KRAS mutations over a 6-year time period. We evaluated the associations among KRAS mutation type, clinical factors, and overall survival in univariate and multivariate analyses. Any significant findings were validated in an external multi-institution patient dataset.ResultsAmong 677 patients with KRAS mutant lung cancers (53 at codon 13, 624 at codon 12), there was no difference in overall survival for patients when comparing KRAS transition versus transversion mutations (p = 0.99), smoking status (p = 0.33), or when comparing specific amino acid substitutions (p = 0.20). In our dataset, patients with KRAS codon 13 mutant tumors (n = 53) had shorter overall survival compared with patients with codon 12 mutant tumors (n = 624) (1.1 versus 1.3 years, respectively; p = 0.009), and the findings were confirmed in a multivariate Cox model controlling for age, sex, and smoking status (hazard ratio: 1.52, 95% confidence interval: 1.11–2.08; p = 0.008). In an independent validation set of tumors from 682 patients with stage IV KRAS mutant lung cancers, there was no difference in survival between patients with KRAS codon 13 versus codon 12 mutations (1.0 versus 1.1 years, respectively; p = 0.41).ConclusionsAmong individuals with KRAS mutant metastatic lung cancers treated with conventional therapy, there are no apparent differences in outcome based on KRAS mutation subtype

    Molecular residual disease detection in resected, muscle-invasive urothelial cancer with a tissue-based comprehensive genomic profiling–informed personalized monitoring assay

    Get PDF
    IntroductionCirculating tumor DNA (ctDNA) detection postoperatively may identify patients with urothelial cancer at a high risk of relapse. Pragmatic tools building off clinical tumor next-generation sequencing (NGS) platforms could have the potential to increase assay accessibility.MethodsWe evaluated the widely available Foundation Medicine comprehensive genomic profiling (CGP) platform as a source of variants for tracking of ctDNA when analyzing residual samples from IMvigor010 (ClinicalTrials.gov identifier NCT02450331), a randomized adjuvant study comparing atezolizumab with observation after bladder cancer surgery. Current methods often involve germline sampling, which is not always feasible or practical. Rather than performing white blood cell sequencing to filter germline and clonal hematopoiesis (CH) variants, we applied a bioinformatic approach to select tumor (non-germline/CH) variants for molecular residual disease detection. Tissue-informed personalized multiplex polymerase chain reaction–NGS assay was used to detect ctDNA postsurgically (Natera).ResultsAcross 396 analyzed patients, prevalence of potentially actionable alterations was comparable with the expected prevalence in advanced disease (13% FGFR2/3, 20% PIK3CA, 13% ERBB2, and 37% with elevated tumor mutational burden ≥10 mutations/megabase). In the observation arm, 66 of the 184 (36%) ctDNA-positive patients had shorter disease-free survival [DFS; hazard ratio (HR) = 5.77; 95% confidence interval (CI), 3.84–8.67; P < 0.0001] and overall survival (OS; HR = 5.81; 95% CI, 3.41–9.91; P < 0.0001) compared with ctDNA-negative patients. ctDNA-positive patients had improved DFS and OS with atezolizumab compared with those in observation (DFS HR = 0.56; 95% CI, 0.38–0.83; P = 0.003; OS HR = 0.66; 95% CI, 0.42–1.05). Clinical sensitivity and specificity for detection of postsurgical recurrence were 58% (60/103) and 93% (75/81), respectively.ConclusionWe present a personalized ctDNA monitoring assay utilizing tissue-based FoundationOne® CDx CGP, which is a pragmatic and potentially clinically scalable method that can detect low levels of residual ctDNA in patients with resected, muscle-invasive bladder cancer without germline sampling

    Genomic and biological study of fusion genes as resistance mechanisms to EGFR inhibitors

    Get PDF
    The clinical significance of gene fusions detected by DNA-based next generation sequencing remains unclear as resistance mechanisms to EGFR tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer. By studying EGFR inhibitor-resistant patients treated with a combination of an EGFR inhibitor and a drug targeting the putative resistance-causing fusion oncogene, we identify patients who benefit and those who do not from this treatment approach. Through evaluation including RNA-seq of potential drug resistance-imparting fusion oncogenes in 504 patients with EGFR mutant lung cancer, we identify only a minority of them as functional, potentially capable of imparting EGFR inhibitor resistance. We further functionally validate fusion oncogenes in vitro using CRISPR-based editing of EGFR mutant cell lines and use these models to identify known and unknown drug resistance mechanisms to combination therapies. Collectively, our results partially reveal the complex nature of fusion oncogenes as potential drug resistance mechanisms and highlight approaches that can be undertaken to determine their functional significance.</p

    KRAS

    No full text

    Effective Cancer Genotyping—Many Means to One End

    No full text

    Power in Numbers: Meta-analysis to Identify Inhibitor-Sensitive Tumor Genotypes

    No full text
    • …
    corecore