26 research outputs found

    Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications

    Get PDF
    Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM. Starting from some recent experimental evidences, we propose to describe the interaction forces involving the extracellular matrix via some concepts coming from viscoplasticity. We then apply the model to the description of the growth of tumour cords and the formation of fibrosis

    High-Frequency, Low-Magnitude Vibration Does Not Prevent Bone Loss Resulting from Muscle Disuse in Mice following Botulinum Toxin Injection

    Get PDF
    High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16–18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ±0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12±9% and 7±6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX

    Musculoskeletal Response to Whole-Body Vibration During Fracture Healing in Intact and Ovariectomized Rats

    Get PDF
    This study investigated the effect of vibration on bone healing and muscle in intact and ovariectomized rats. Thirty ovariectomized (at 3 months of age) and 30 intact 5-month old female Sprague-Dawley rats underwent bilateral metaphyseal osteotomy of tibia. Five days later, half of the ovariectomized and of the intact rats were exposed to whole-body vertical vibration (90 Hz, 0.5 mm, 4 × g acceleration) for 15 min twice a day during 30 days. The other animals did not undergo vibration. After decapitation of rats, one tibia was used for computed tomographic, biomechanical, and histological analyses; the other was used for gene expression analyses of alkaline phosphatase (Alp), osteocalcin (Oc), tartrate-resistant acid phosphatase 1, and insulinlike growth factor 1. Serum Alp and Oc were measured. Mitochondrial activity, fiber area and distribution, and capillary densities were analyzed in M. gastrocnemius and M. longissimus. We found that vibration had no effect on body weight and food intake, but it improved cortical and callus densities (97 vs. 99%, 72 vs. 81%), trabecular structure (9 vs. 14 trabecular nodes), blood supply (1.7 vs. 2.1 capillaries/fiber), and oxidative metabolism (17 vs. 23 pmol O2/s/mg) in ovariectomized rats. Vibration generally increased muscle fiber size. Tibia biomechanical properties were diminished after vibration. Oc gene expression was higher in vibrated rats. Serum Alp was increased in ovariectomized rats. In ovariectomized rats, vibration resulted in an earlier bridging; in intact rats, callus bridging occurred later after vibration. The chosen vibration regimen (90 Hz, 0.5 mm, 4 × g acceleration, 15 min twice a day) was effective in improving musculoskeletal tissues in ovariectomized rats but was not optimal for fracture healing

    Selective matrix metalloproteinase inhibition increases breaking strength and reduces anastomotic leakage in experimentally obstructed colon

    No full text
    PURPOSE: Colonic obstruction causes loss of collagen and impairment of anastomotic integrity by matrix metalloproteinases (MMPs). Unexpectedly, pharmacological MMP inhibition increased anastomotic leakage (AL) in obstructed colon possibly due to the non-selective nature of these compounds and the experimental model applied. We therefore studied the effects of selective MMP inhibition on the healing of anastomoses in colon obstructed by a novel laparoscopic technique.METHODS: Left colon was obstructed in 38 male Sprague-Dawley rats (226-284 g). After 12 h, stenoses were resected and end-to-end anastomoses constructed. Baseline breaking strength was determined in 6 animals on day 0. The remaining 32 rats were randomized to daily treatment with the selective MMP-8, MMP-9, and MMP-12 inhibitor AZD3342 (n = 16) or vehicle (n = 16). On day 3, anastomoses were evaluated for AL and breaking strength. Isolated anastomotic wound tissue was analyzed on total collagen and pepsin-insoluble and pepsin-soluble collagen by hydroxyproline. The soluble collagens were further differentiated into native, measured by Sircol, and fragmented forms.RESULTS: Baseline breaking strength was maintained with AZD3342 but decreased by 25% (P = 0.023) in the vehicle group. The anastomotic breaking strength of AZD3342-treated rats was 44% higher (P = 0.008) than the vehicle-treated rats. Furthermore, the AL rate was reduced (P = 0.037) with AZD3342 compared with vehicle treatment. AZD3342 treatment influenced neither the total or insoluble collagen concentrations nor the degree of fragmentation of the soluble collagen triple helices.CONCLUSION: Selective MMP inhibition increased anastomotic breaking strength and reduced AL after resection of colonic obstruction.</p

    Ovariectomy sensitizes rat cortical bone to whole-body vibration

    No full text
    This study was designed to determine the modulatory effect of estrogen on mechanical stimulation in bone. Trabecular and cortical bone compartments of ovariectomized rats exposed to whole-body vibration of different amplitudes were evaluated by peripheral quantitative computed tomographic (pQCT) analysis and histomorphometry and compared to controls not exposed to vibration. Rats underwent whole-body vibration (20 minutes/day, 5 days/week) on a vibration platform for 2 months. The control rats were placed on the platform without vibration for the same time. We divided rats into six groups: a sham control (SHAM); a sham vibrated (SHAM-V) at 30 Hz, 0.6 g; a SHAM-V at 30 Hz, 3g; an ovariectomized control (OVX); an ovariectomized vibrated (OVX-V) at 30 Hz, 0.6 g; and an OVX-V at 30 Hz, 3g. In vivo, pQCT analyses of the tibiae were performed at the start of the experiment and after 4 and 8 weeks. After 8 weeks the tibiae were excised for histomorphometric and for in vitro pQCT analyses. In the SHAM-V group, vibration had no effect upon the different bone parameters. In the OVX-V group, vibration induced a significant increase compared to the OVX group of the cortical and medullary areas (P < 0.01) and of the periosteal (P < 0.01) and endosteal (P < 0.05) perimeters at the 3 g vibration. The strain strength index increased in the OVX-V group significantly (P < 0.01) at the higher vibration. The results showed that low-amplitude, high-frequency whole-body vibration is anabolic to bone in OVX animals. The osteogenic potential is limited to the modeling of the bone cortex and depends on the amplitude of the vibration

    Cytoskeletal Configuration Modulates Mechanically Induced Changes in Mesenchymal Stem Cell Osteogenesis, Morphology, and Stiffness

    Get PDF
    Mesenchymal stem cells (MSC) responding to mechanical cues generated by physical activity is critical for skeletal development and remodeling. Here, we utilized low intensity vibrations (LIV) as a physiologically relevant mechanical signal and hypothesized that the confined cytoskeletal configuration imposed by 2D culture will enable human bone marrow MSCs (hBMSC) to respond more robustly when LIV is applied in-plane (horizontal-LIV) rather than out-of-plane (vertical-LIV). All LIV signals enhanced hBMSC proliferation, osteogenic differentiation, and upregulated genes associated with cytoskeletal structure. The cellular response was more pronounced at higher frequencies (100 Hz vs 30 Hz) and when applied in the horizontal plane. Horizontal but not vertical LIV realigned the cell cytoskeleton, culminating in increased cell stiffness. Our results show that applying very small oscillatory motions within the primary cell attachment plane, rather than perpendicular to it, amplifies the cell’s response to LIV, ostensibly facilitating a more effective transfer of intracellular forces. Transcriptional and structural changes in particular with horizontal LIV, together with the strong frequency dependency of the signal, emphasize the importance of intracellular cytoskeletal configuration in sensing and responding to high-frequency mechanical signals at low intensities
    corecore