8,761 research outputs found

    Sound propagation and force chains in granular materials

    Full text link
    Granular materials are inherently heterogeneous, leading to challenges in formulating accurate models of sound propagation. In order to quantify acoustic responses in space and time, we perform experiments in a photoelastic granular material in which the internal stress pattern (in the form of force chains) is visible. We utilize two complementary methods, high-speed imaging and piezoelectric transduction, to provide particle-scale measurements of both the amplitude and speed of an acoustic wave in the near-field regime. We observe that the wave amplitude is on average largest within particles experiencing the largest forces, particularly in those chains radiating away from the source, with the force-dependence of this amplitude in qualitative agreement with a simple Hertzian-like model of particle contact area. In addition, we are able to directly observe rare transient force chains formed by the opening and closing of contacts during propagation. The speed of the leading edge of the pulse is in quantitative agreement with predictions for one-dimensional chains, while the slower speed of the peak response suggests that it contains waves which have travelled over multiple paths even within just this near-field region. These effects highlight the importance of particle-scale behaviors in determining the acoustical properties of granular materials

    Characterisation of real GPRS traffic with analytical tools

    Get PDF
    With GPRS and UMTS networks lunched, wireless multimedia services are commercially becoming the most attractive applications next to voice. Because of the nature of bursty, packet-switched schemes and multiple data rates, the traditional Erlang approach and Poisson models for characterising voice-centric services traffic are not suitable for studying wireless multimedia services traffic. Therefore, research on the characterisation of wireless multimedia services traffic is very challenging. The typical reference for the study of wireless multimedia services traffic is wired Internet services traffic. However, because of the differences in network protocol, bandwidth, and QoS requirements between wired and wireless services, their traffic characterisations may not be similar. Wired network Internet traffic shows self-similarity, long-range dependence and its file sizes exhibit heavy-tailedness. This paper reports the use of existing tools to analyse real GPRS traffic data to establish whether wireless multimedia services traffic have similar properties as wired Internet services traffic

    iCub robot modelling and control of its biped locomotion

    Get PDF

    Experimentally validated continuous-time repetitive control of non-minimum phase plants with a prescribed degree of stability

    No full text
    This paper considers the application of continuous-time repetitive control to non-minimum phase plants in a continuous-time model predictive control setting. In particular, it is shown how some critical performance problems associated with repetitive control of such plants can be avoided by use of predictive control with a prescribed degree of stability. The results developed are first illustrated by simulation studies and then through experimental tests on a non-minimum phase electro-mechanical system

    Decorin-evoked paternally expressed gene 3 (PEG3) is an upstream regulator of the transcription factor EB (TFEB) in endothelial cell autophagy.

    Get PDF
    Macroautophagy is a fundamental and evolutionarily conserved catabolic process that eradicates damaged and aging macromolecules and organelles in eukaryotic cells. Decorin, an archetypical small leucine-rich proteoglycan, initiates a protracted autophagic program downstream of VEGF receptor 2 (VEGFR2) signaling that requires paternally expressed gene 3 (PEG3). We have discovered that PEG3 is an upstream transcriptional regulator of transcription factor EB (TFEB), a master transcription factor of lysosomal biogenesis, for decorin-evoked endothelial cell autophagy. We found a functional requirement of PEG3 for TFEB transcriptional induction and nuclear translocation in human umbilical vein endothelial and PAER2 cells. Mechanistically, inhibiting VEGFR2 or AMP-activated protein kinase (AMPK), a major decorin-activated energy sensor kinase, prevented decorin-evoked TFEB induction and nuclear localization. In conclusion, our findings indicate a non-canonical (nutrient- and energy-independent) mechanism underlying the pro-autophagic bioactivity of decorin via PEG3 and TFEB
    • 

    corecore