24 research outputs found

    Perceptions of 24/7 In‐house Attending Coverage on Fellow Education and Autonomy in a Pediatric Cardiothoracic Intensive Care Unit

    Full text link
    BackgroundThe 24/7 in‐house attending coverage is emerging as the standard of care in intensive care units. Implementation costs, workforce feasibility, and patient outcomes resulting from changes in physician staffing are widely debated topics. Understanding the impact of staffing models on the learning environment for medical trainees and faculty is equally warranted, particularly with respect to trainee education and autonomy.ObjectiveThis study aims to elicit the perceptions of pediatric cardiology fellows and attendings toward 24/7 in‐house attending coverage and its effect on fellow education and autonomy.MethodsWe surveyed pediatric cardiology fellows and attendings practicing in the pediatric cardiothoracic intensive care unit (PCTU) of a large, university‐affiliated medical center, using structured Likert response items and open‐ended questions, prior to and following the transition to 24/7 in‐house attending coverage.ResultsAll (100%) trainees and faculty completed all surveys. Both prior to and following transition to 24/7 in‐house attending coverage, all fellows, and the majority of attendings agreed that the overnight call experience benefited fellow education. At baseline, trainees identified limited circumstances in which on‐site attending coverage would be critical. Preimplementation concerns that 24/7 in‐house attending coverage would negatively affect the education of fellows were not reflected following actual implementation of the new staffing policy. However, based upon open‐ended questions, fellow autonomy was affected by the new paradigm, with fellows and attendings reporting decreased “appropriateness” of autonomy after implementation.ConclusionsOur prospective study, showing initial concerns about limiting the learning environment in transitioning to 24/7 in‐house attending coverage did not result in diminished perceptions of the educational experience for our fellows but revealed an expected decrease in fellow autonomy. The study indirectly facilitated open discussions about methods to preserve fellow education and warranted autonomy in our PCTU; however, continued efforts are needed to achieve the optimal balance between supervised training and the transition to autonomous practice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111990/1/chd12261.pd

    Multiple ultrasound cavitation-enabled treatments for myocardial reduction

    Get PDF
    Abstract Background Ultrasound myocardial cavitation enabled treatment (MCET) is an image-guided method for tissue reduction. In this study, a strategy of fractionated (multiple) treatments was tested for efficacy. Methods Dahl SS rats were anesthetized and prepared for treatment with a focused ultrasound transducer in a warm water bath. Aiming at the anterior left ventricular wall was facilitated by imaging with a 10 MHz phased array (10S, GE Vivid 7, GE Vingmed Ultrasound, Horten, Norway). MCET was accomplished at 1.5 MHz by pulse bursts of 4 MPa peak rarefactional pressure amplitude, which were intermittently triggered 1:8 from the ECG during infusion of a microbubble suspension for cavitation nucleation. Test groups were sham, a 200 s treatment, three 200 s treatments a week apart, and a 600 s treatment. Treatment outcome was observed by plasma troponin after 4 h, echocardiographic monitoring and histology at 6 wk. Results The impacts of the fractionated treatments summed to approximately the same as the long treatment; e. g. the troponin result was 10.5 ± 3.2 for 200 s, 22.7 ± 5.4 (p < 0.001) for the summed fractionated treatments and 29.9 ± 6.4 for 600 s (p = 0.06 relative to the summed fractionated). While wall thickness was not reduced for the fractionated treatment, tissue strain was reduced by 35% in the target area relative sham (p < 0.001). Conclusion The ability to fractionate treatment may be advantageous for optimizing patient outcome relative to all-or nothing therapy by surgical myectomy or alcohol ablation.https://deepblue.lib.umich.edu/bitstream/2027.42/139057/1/40349_2017_Article_107.pd

    Timing of high-intensity pulses for myocardial cavitation-enabled therapy

    Get PDF
    Abstract Background High-intensity ultrasound pulses intermittently triggered from an ECG signal can interact with circulating contrast agent microbubbles to produce myocardial cavitation microlesions of potential therapeutic value. In this study, the timing of therapy pulses relative to the ECG R wave was investigated to identify the optimal time point for tissue reduction therapy with regard to both the physiological cardiac response and microlesion production. Methods Rats were anesthetized, prepared for ultrasound, placed in a heated water bath, and treated with 1.5 MHz focused ultrasound pulses targeted to the left ventricular myocardium with an 8 MHz imaging transducer. Initially, the rats were treated for 1 min at each of six different time points in the ECG while monitoring blood pressure responses to assess cardiac functional effects. Next, groups of rats were treated at three different time points: end diastole, end systole, and mid-diastole to assess the impact of timing on microlesion creation. These rats were pretreated with Evans blue injections and were allowed to recover for 1 day until hearts were harvested for scoring of injured cardiomyocytes. Results The initial results showed a wide range of cardiac premature complexes in the ECG, which corresponded with blood pressure pulses for ultrasound pulses triggered during diastole. However, the microlesion experiment did not reveal any statistically significant variations in cardiomyocyte injury. Conclusion The end of systole (R + RR/3) was identified as an optimal trigger time point which produced identifiable ECG complexes and substantial cardiomyocyte injury but minimal cardiac functional disruption during treatment.http://deepblue.lib.umich.edu/bitstream/2027.42/109552/1/40349_2014_Article_36.pd

    Extracorporeal Life Support as a Rescue Measure for Managing Life-Threatening Arrythmia and Brugada Syndrome

    No full text
    We describe the use of extracorporeal cardiopulmonary resuscitation (E-CPR) to transiently stabilize a 3-month-old patient who presented with ventricular tachyarrhythmias leading to spontaneous cardiac arrest. The patient required 4 days of extracorporeal life support (ECLS) where he was diagnosed with probable Brugada syndrome (BS). The patient was discharged home in stable condition after implantable cardioverter defibrillator placement. This case highlights the importance of early transfer to extracorporeal membrane oxygenation (ECMO) center in the setting of unexplained cardiac arrhythmia in a pediatric patient. BS is an autosomal dominant genetic disorder with variable expression characterized by abnormal findings on electrocardiogram (ECG) in conjunction with an increased risk of ventricular tachyarrhythmias and sudden cardiac arrest (SCA). Early management is critical and early consideration to transfer to an institution where extracorporeal life support (ECLS/ECMO) is present to support the patient while further diagnostic work up is in progress is lifesaving

    Low renal oximetry correlates with acute kidney injury after infant cardiac surgery

    No full text
    Acute kidney injury (AKI) is a frequent complication after cardiopulmonary bypass surgery during infancy. Standard methods for evaluating renal function are not particularly sensitive nor are proximate indicators of renal dysfunction that allow intervention in real time. Near-infrared spectroscopy (NIRS) is a newer noninvasive technology that continuously evaluates regional oximetry and may correlate with renal injury and adverse outcomes after cardiac surgery in infants. This prospective observational study enrolled 40 infants (age, \u3c12 months) undergoing biventricular repair. Continuous renal oximetry data were collected for the first 48 postoperative hours and correlated with postoperative course, standard laboratory data, and the occurrence of acute renal injury. Subjects with low renal oximetry (below 50% for \u3e2 h) had significantly higher postoperative peak creatinine levels by 48 h (0.8 ± 0.4 vs. 0.52 ± 0.2; p = 0.003) and a higher incidence of AKI (50 vs. 3.1%; p = 0.003) than those with normal renal oximetry. These subjects also required more ventilator days and greater vasoactive support, and they had elevated lactate levels. Prolonged low renal near-infrared oximetry appears to correlate with renal dysfunction, decreased systemic oxygen delivery, and the overall postoperative course in infants with congenital heart disease undergoing biventricular repair. © 2010 Springer Science+Business Media, LLC

    Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy)

    No full text
    corecore