13 research outputs found

    Oral Activated Charcoal Prevents Experimental Cerebral Malaria in Mice and in a Randomized Controlled Clinical Trial in Man Did Not Interfere with the Pharmacokinetics of Parenteral Artesunate

    Get PDF
    Background: Safe, cheap and effective adjunct therapies preventing the development of, or reducing the mortality from, severe malaria could have considerable and rapid public health impact. Oral activated charcoal (oAC) is a safe and well tolerated treatment for acute poisoning, more recently shown to have significant immunomodulatory effects in man. In preparation for possible efficacy trials in human malaria, we sought to determine whether oAC would i) reduce mortality due to experimental cerebral malaria (ECM) in mice, ii) modulate immune and inflammatory responses associated with ECM, and iii) affect the pharmacokinetics of parenteral artesunate in human volunteers.Methods/Principal Findings: We found that oAC provided significant protection against P. berghei ANKA-induced ECM, increasing overall survival time compared to untreated mice (p<0.0001; hazard ratio 16.4; 95% CI 6.73 to 40.1). Protection from ECM by oAC was associated with reduced numbers of splenic TNF+ CD4(+) T cells and multifunctional IFN gamma(+) TNF+ CD4(+) and CD8(+) T cells. Furthermore, we identified a whole blood gene expression signature (68 genes) associated with protection from ECM. To evaluate whether oAC might affect current best available anti-malarial treatment, we conducted a randomized controlled open label trial in 52 human volunteers (ISRCTN NR. 64793756), administering artesunate ( AS) in the presence or absence of oAC. We demonstrated that co-administration of oAC was safe and well-tolerated. In the 26 subjects further analyzed, we found no interference with the pharmacokinetics of parenteral AS or its pharmacologically active metabolite dihydroartemisinin.Conclusions/Significance: oAC protects against ECM in mice, and does not interfere with the pharmacokinetics of parenteral artesunate. If future studies succeed in establishing the efficacy of oAC in human malaria, then the characteristics of being inexpensive, well-tolerated at high doses and requiring no sophisticated storage would make oAC a relevant candidate for adjunct therapy to reduce mortality from severe malaria, or for immediate treatment of suspected severe malaria in a rural setting

    Skin parasite landscape determines host infectiousness in visceral leishmaniasis

    Get PDF
    Increasing evidence suggests that the infectiousness of patients for the sand fly vector of visceral leishmaniasis is linked to parasites found in the skin. Using a murine model that supports extensive skin infection with Leishmania donovani, spatial analyses at macro-(quantitative PCR) and micro-(confocal microscopy) scales indicate that parasite distribution is markedly skewed. Mathematical models accounting for this heterogeneity demonstrate that while a patchy distribution reduces the expected number of sand flies acquiring parasites, it increases the infection load for sand flies feeding on a patch, increasing their potential for onward transmission. Models representing patchiness at both macro- and micro-scales provide the best fit with experimental sand fly feeding data, pointing to the importance of the skin parasite landscape as a predictor of host infectiousness. Our analysis highlights the skin as a critical site to consider when assessing treatment efficacy, transmission competence and the impact of visceral leishmaniasis elimination campaigns.Parasitemia has been considered the main determinant of visceral leishmaniasis transmission. By combining imaging, qPCR and experimental xenodiagnoses with mathematical models, Doehl et al. argue that the patchy landscape of parasites in the skin is necessary to explain infectiousness

    Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation

    No full text
    Background andamp; Aims Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4+andnbsp;T cellsandnbsp;to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. Methods We collected samples ofandnbsp;peripheral bloodandnbsp;mononuclear cells and intestinal tissues from healthy individuals (controls, nandnbsp;= 13andminus;30) andandnbsp;patients with inflammatory bowel diseasesandnbsp;(nandnbsp;= 119; 59 withandnbsp;ulcerative colitisandnbsp;and 60 with Crohnandrsquo;s disease). We used 2 independent assays (CD154 detection andandnbsp;carboxy-fluorescein succinimidyl esterandnbsp;dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalisandnbsp;subspandnbsp;lactis,andnbsp;Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum,andnbsp;Salmonella typhimurium,andnbsp;andandnbsp;Clostridiumandnbsp;difficile) to quantify, expand, and characterize microbe-reactive CD4+andnbsp;Tandnbsp;cells. We sequencedandnbsp;T-cell receptorandnbsp;Vandbeta; genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4+andnbsp;Tandnbsp;cells on intestinal stromal andandnbsp;epithelial cellandnbsp;lines.andnbsp;Cytokines,andnbsp;chemokines, and gene expression patterns were measured byandnbsp;flow cytometryandnbsp;and quantitativeandnbsp;polymerase chain reaction. Results Circulating and gut-resident CD4+andnbsp;T cells from controls responded to bacteria at frequencies of 40andminus;4000 per million for each bacterial species tested. Microbiota-reactive CD4+andnbsp;T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vandbeta;andnbsp;repertoire. These cells were functionally heterogeneous, produced barrier-protective cytokines, and stimulated intestinal stromal and epithelial cells viaandnbsp;interleukinandnbsp;17A,andnbsp;interferonandnbsp;gamma, andandnbsp;tumor necrosis factor. In patients with inflammatory bowel diseases, microbiota-reactive CD4+andnbsp;T cells were reduced in the blood compared with intestine;andnbsp;T-cell responsesandnbsp;that we detected had an increased frequency of interleukin 17A production compared with responses of T cells from blood or intestinal tissues of controls. Conclusions In an analysis of peripheral blood mononuclear cells and intestinal tissues from patients with inflammatory bowel diseases vs controls, we found that reactivity to intestinal bacteria is a normal property of the human CD4+andnbsp;T-cell repertoire, and does not necessarily indicate disrupted interactions between immune cells and the commensal microbiota. T-cell responses to commensals might support intestinal homeostasis, by producing barrier-protective cytokines and providing a large pool of T cells that react toandnbsp;pathogens.</p

    Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation

    No full text
    Background &amp; Aims Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4+ T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. Methods We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13−30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn’s disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4+ T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4+ T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. Results Circulating and gut-resident CD4+ T cells from controls responded to bacteria at frequencies of 40−4000 per million for each bacterial species tested. Microbiota-reactive CD4+ T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These cells were functionally heterogeneous, produced barrier-protective cytokines, and stimulated intestinal stromal and epithelial cells via interleukin 17A, interferon gamma, and tumor necrosis factor. In patients with inflammatory bowel diseases, microbiota-reactive CD4+ T cells were reduced in the blood compared with intestine; T-cell responses that we detected had an increased frequency of interleukin 17A production compared with responses of T cells from blood or intestinal tissues of controls. Conclusions In an analysis of peripheral blood mononuclear cells and intestinal tissues from patients with inflammatory bowel diseases vs controls, we found that reactivity to intestinal bacteria is a normal property of the human CD4+ T-cell repertoire, and does not necessarily indicate disrupted interactions between immune cells and the commensal microbiota. T-cell responses to commensals might support intestinal homeostasis, by producing barrier-protective cytokines and providing a large pool of T cells that react to pathogens.</p

    Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease.

    No full text
    Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumour necrosis factor-α (TNF) antibodies are a mainstay therapeutic approach for IBD. However, up to 40% of patients are non-responsive to anti-TNF agents, and identifying alternative therapeutic targets is a priority. Here we show that expression of the cytokine Oncostatin M (OSM) and its receptor (OSMR) is increased in the inflamed intestine of IBD patients compared to healthy controls, and correlates closely with histopathological disease severity. OSMR is expressed in non-hematopoietic, non-epithelial intestinal stromal cells, which respond to OSM by producing various pro-inflammatory factors including interleukin-6 (IL-6), the leukocyte adhesion factor ICAM-1, and chemokines that attract neutrophils, monocytes, and T cells. In an animal model of anti-TNF refractory intestinal inflammation, genetic deletion or pharmacological blockade of OSM significantly attenuates colitis. Furthermore, high pre-treatment OSM expression is strongly associated with failure of anti-TNF therapy based on analysis of over 200 IBD patients, including two cohorts from phase 3 clinical trials of infliximab and golimumab. OSM is thus a potential biomarker and therapeutic target for IBD, with particular relevance for anti-TNF refractory patients

    Antiviral activity of bone morphogenetic proteins and activins

    No full text
    Understanding the control of viral infections is of broad importance. Chronic hepatitis C virus (HCV) infection causes decreased expression of the iron hormone hepcidin, which is regulated by hepatic bone morphogenetic protein (BMP)/SMAD signalling. We found that HCV infection and the BMP/SMAD pathway are mutually antagonistic. HCV blunted induction of hepcidin expression by BMP6, probably via tumour necrosis factor (TNF)-mediated downregulation of the BMP co-receptor haemojuvelin. In HCV-infected patients, disruption of the BMP6/hepcidin axis and genetic variation associated with the BMP/SMAD pathway predicted the outcome of infection, suggesting that BMP/SMAD activity influences antiviral immunity. Correspondingly, BMP6 regulated a gene repertoire reminiscent of type I interferon (IFN) signalling, including upregulating interferon regulatory factors (IRFs) and downregulating an inhibitor of IFN signalling, USP18. Moreover, in BMP-stimulated cells, SMAD1 occupied loci across the genome, similar to those bound by IRF1 in IFN-stimulated cells. Functionally, BMP6 enhanced the transcriptional and antiviral response to IFN, but BMP6 and related activin proteins also potently blocked HCV replication independently of IFN. Furthermore, BMP6 and activin A suppressed growth of HBV in cell culture, and activin A inhibited Zika virus replication alone and in combination with IFN. The data establish an unappreciated important role for BMPs and activins in cellular antiviral immunity, which acts independently of, and modulates, IFN

    Antiviral activity of bone morphogenetic proteins and activins

    No full text
    Understanding the control of viral infections is of broad importance. Chronic hepatitis C virus (HCV) infection causes decreased expression of the iron hormone hepcidin, which is regulated by hepatic bone morphogenetic protein (BMP)/SMAD signalling. We found that HCV infection and the BMP/SMAD pathway are mutually antagonistic. HCV blunted induction of hepcidin expression by BMP6, probably via tumour necrosis factor (TNF)-mediated downregulation of the BMP co-receptor haemojuvelin. In HCV-infected patients, disruption of the BMP6/hepcidin axis and genetic variation associated with the BMP/SMAD pathway predicted the outcome of infection, suggesting that BMP/SMAD activity influences antiviral immunity. Correspondingly, BMP6 regulated a gene repertoire reminiscent of type I interferon (IFN) signalling, including upregulating interferon regulatory factors (IRFs) and downregulating an inhibitor of IFN signalling, USP18. Moreover, in BMP-stimulated cells, SMAD1 occupied loci across the genome, similar to those bound by IRF1 in IFN-stimulated cells. Functionally, BMP6 enhanced the transcriptional and antiviral response to IFN, but BMP6 and related activin proteins also potently blocked HCV replication independently of IFN. Furthermore, BMP6 and activin A suppressed growth of HBV in cell culture, and activin A inhibited Zika virus replication alone and in combination with IFN. The data establish an unappreciated important role for BMPs and activins in cellular antiviral immunity, which acts independently of, and modulates, IFN

    Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease

    Get PDF
    Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumour necrosis factor-α (TNF) antibodies are a mainstay therapeutic approach for IBD. However, up to 40% of patients are non-responsive to anti-TNF agents, and identifying alternative therapeutic targets is a priority. Here we show that expression of the cytokine Oncostatin M (OSM) and its receptor (OSMR) is increased in the inflamed intestine of IBD patients compared to healthy controls, and correlates closely with histopathological disease severity. OSMR is expressed in non-hematopoietic, non-epithelial intestinal stromal cells, which respond to OSM by producing various pro-inflammatory factors including interleukin-6 (IL-6), the leukocyte adhesion factor ICAM-1, and chemokines that attract neutrophils, monocytes, and T cells. In an animal model of anti-TNF refractory intestinal inflammation, genetic deletion or pharmacological blockade of OSM significantly attenuates colitis. Furthermore, high pre-treatment OSM expression is strongly associated with failure of anti-TNF therapy based on analysis of over 200 IBD patients, including two cohorts from phase 3 clinical trials of infliximab and golimumab. OSM is thus a potential biomarker and therapeutic target for IBD, with particular relevance for anti-TNF refractory patients
    corecore