15,439 research outputs found

    Memory and food intake in sheep: Effects of previous exposure to straw on intake and behaviour later in life

    Get PDF
    The ban on open-air burning of agricultural by-products by the European Union created disposal problems on many farms. Success was limited in attempts at feeding agricultural by-products like cereal straws to previously grazed livestock. This initial reluctance to accept unfamiliar feeds was also reported when livestock were fed whole-grain cereals in drought, or when grazed on new pastures and shrubs. It is suggested that previous exposure to feed might speed up the rate at which it is accepted, particularly if such experiences take place at pre-weaning. This study aimed at establishing the veracity of this assertion, and whether an early learning experience is carried over into adulthood. Two feeding trails were carried out with lambs not exposed (NE) to straw and those given access to straw at 12 weeks of age for either 10 (E-10) or 28 (E-28) days. At 24 weeks (Experiment 1), 10 lambs from each of the three treatment groups were tested, over 21 days, on their readiness to accept straw as feed. At 36 weeks (Experiment 2), another batch of lambs (from the E-28 and NE groups only) were similarly tested. For each, the lambs were penned individually (in view of lambs from their own treatment group) and also offered a concentrate supplement to meet daily nutrient requirements. In both experiments, intake of straw OM, N and DOM, as well as leaf to stem ratio in reject straw, were assessed for each penned lamb. Animal behaviour pattern was monitored once every 5 min, over an 8-h period, immediately after first confinement. Frequency of eating, idling, ruminating, or drinking were all found to be significantly greater (

    An X-ray and Optical Investigation of the Environments Around Nearby Radio Galaxies

    Full text link
    Investigations of the cluster environment of radio sources have not shown a correlation between radio power and degree of clustering. However, it has been demonstrated that extended X-ray luminosity and galaxy clustering do exhibit a positive correlation. This study investigates a complete sample of 25 nearby (z less than 0.06) radio galaxies which are not cataloged members of Abell clusters. The environment of these radio galaxies is studied in both the X-ray and the optical by means of the ROSAT All-Sky Survey (RASS), ROSAT pointed observations, and the Palomar optical Digitized Sky Survey (DSS). X-ray luminosities and extents are determined from the RASS, and the DSS is used to quantify the degree of clustering via the spatial two-point correlation coefficient, Bgg. Of the 25 sources, 20 are greater than sigma detections in the X-ray and 11 possessed Bgg's significantly in excess of that expected for an isolated galaxy. Adding the criterion that the X-ray emission be resolved, 10 of the radio galaxies do appear to reside in poor clusters with extended X-ray emission suggestive of the presence of an intracluster medium. Eight of these galaxies also possess high spatial correlation coefficients. Taken together, these data suggest that the radio galaxies reside in a low richness extension of the Abell clusters. The unresolved X-ray emission from the other galaxies is most likely associated with AGN phenomena. Furthermore, although the sample size is small, it appears that the environments of FR I and FR II sources differ. FR I's tend to be more frequently associated with extended X-ray emission (10 of 18), whereas FR II's are typically point sources or non-detections in the X-ray (none of the 7 sources exhibit extended X-ray emission).Comment: 28 page postscript file including figures and tables, plus one landscape table and 5 GIF figure

    A Comprehensive Radio and Optical Study of Abell 2256: Activity from an Infalling Group

    Get PDF
    Abell 2256 is a nearby (z~0.06), rich cluster of galaxies with fascinating observed properties across a range of wavelengths. Long believed to represent a cluster merger, recent X-ray and optical results have suggested that in addition to the primary cluster and subcluster there is evidence for a third, poorer system. We present wide-field, high sensitivity 1.4 GHz VLA radio observations of Abell 2256 in conjunction with optical imaging and additional spectroscopy. Over 40 cluster radio galaxies are identified, with optical spectroscopy indicating the emission source (star formation or AGN) for most of them. While the overall fraction of galaxies exhibiting radio emission is consistent with a large sample of other nearby clusters, we find an increase in the activity level of galaxies belonging to the third system (hereafter, the ``Group''). Specifically, the Group has relatively more star formation than both the primary cluster and main subcluster. The position of the Group is also coincident with the observed cluster radio relic. We suggest that the Group recently (~0.3 Gyr) merged with the primary cluster and that this merger, not the ongoing merger of the primary and the main subcluster, might be responsible for many of the unusual radio properties of Abell 2256. Furthermore, the greater star formation activity of the Group suggests that the infall of groups is an important driver of galaxy evolution in clusters.Comment: 21 pages plus 13 JPEG figures; to appear in the Astronomical Journa

    Addressing environmental and atmospheric challenges for capturing high-precision thermal infrared data in the field of astro-ecology

    Full text link
    Using thermal infrared detectors mounted on drones, and applying techniques from astrophysics, we hope to support the field of conservation ecology by creating an automated pipeline for the detection and identification of certain endangered species and poachers from thermal infrared data. We test part of our system by attempting to detect simulated poachers in the field. Whilst we find that we can detect humans hiding in the field in some types of terrain, we also find several environmental factors that prevent accurate detection, such as ambient heat from the ground, absorption of infrared emission by the atmosphere, obscuring vegetation and spurious sources from the terrain. We discuss the effect of these issues, and potential solutions which will be required for our future vision for a fully automated drone-based global conservation monitoring system.Comment: Published in Proceedings of SPIE Astronomical Telescopes and Instrumentation 2018. 8 pages, 3 figure

    A Magnetically-Switched, Rotating Black Hole Model For the Production of Extragalactic Radio Jets and the Fanaroff and Riley Class Division

    Get PDF
    A model is presented in which both Fanaroff and Riley class I and II extragalactic jets are produced by magnetized accretion disk coronae in the ergospheres of rotating black holes. While the jets are produced in the accretion disk itself, the output power still is an increasing function of the black hole angular momentum. For high enough spin, the black hole triggers the magnetic switch, producing highly-relativistic, kinetic-energy-dominated jets instead of Poynting-flux-dominated ones for lower spin. The coronal mass densities needed to trigger the switch at the observed FR break power are quite small (1015gcm3\sim 10^{-15} g cm^{-3}), implying that the source of the jet material may be either a pair plasma or very tenuous electron-proton corona, not the main accretion disk itself. The model explains the differences in morphology and Mach number between FR I and II sources and the observed trend for massive galaxies to undergo the FR I/II transition at higher radio power. It also is consistent with the energy content of extended radio lobes and explains why, because of black hole spindown, the space density of FR II sources should evolve more rapidly than that of FR I sources. If the present model is correct, then the ensemble average speed of parsec-scale jets in sources distinguished by their FR I morphology (not luminosity) should be distinctly slower than that for sources with FR II morphology. The model also suggests the existence of a population of high-redshift, sub-mJy FR I and II radio sources associated with spiral or pre-spiral galaxies that flared once when their black holes were formed but were never again re-kindled by mergers.Comment: 14 pages, 2 figures, final version to appear in Sept Ap
    corecore