1,000 research outputs found

    Genomic determination of minimum multi-locus sequence typing schemas to represent the genomic phylogeny of Mycoplasma hominis.

    Get PDF
    Background: Mycoplasma hominis is an opportunistic human pathogen, associated with clinically diverse disease. Currently, there is no standardised method for typing M. homins, which would aid in understanding pathogen epidemiology and transmission. Due to availability and costs of whole genome sequencing and the challenges in obtaining adequate M. hominis DNA, the use of whole genome sequence analysis to provide clinical guidance is unpractical for this bacterial species as well as other fastidious organisms. Results: This study identified pan-genome set of 700 genes found to be present in four published reference genomes. A subset of 417 genes was identified to be core genome for 18 isolates and 1 reference. Leave-one-out analysis of the core genes highlighted set of 48 genes that are required to recapture the original phylogenetic relationships observed using whole genome SNP analysis. Three 7-locus MLST schemas with high diversity index (97%) and low dN/dS ratios (0.1, 0.13, and 0.11) were derived that could be used to confer good discrimination between strains and could be of practical use in future studies direct on clinical specimens. Conclusions: The genes proposed in this study could be utilised to design a costeffective and rapid PCR-based MLST assay that could be applied directly to clinical isolates, without prior isolation. This study includes additional genomic analysis revealing high levels of genetic heterogeneity among this species. This provides a novel and evidence based approach for the development of MLST schema that accurately represent genomic phylogeny for use in epidemiology and transmission studies

    MYCO WELL D-ONE detection of Ureaplasma spp. and Mycoplasma hominis in sexual health patients in Wales

    Get PDF
    The genital mycoplasmas are a unique group of inherently antibiotic-resistant sexually transmitted bacteria, often associated with non-gonococcal urethritis and bacterial vaginosis. The MYCO WELL D-ONE is a culture-based assay that aims to detect these organisms whilst concurrently screening them for antibiotic resistance. Urine and/or swabs from 856 informed and consented participants attending Welsh sexual health clinics were subjected to MYCO WELL D-ONE analysis, alongside qPCR and culture titration methodologies to determine sensitivity, specificity, PPV, NPV and accuracy. Resistance was confirmed by CLSI-compliant susceptibility testing and genetic mechanisms determined. The MYCO WELL D-ONE displayed a sensitivity and specificity of 91.98% and 96.44% for the detection of Ureaplasma spp., with sensitivity and specificity values of 78.23% and 98.84% for Mycoplasma hominis, compared with qPCR. Swabs harboured significantly greater bacterial loads than urine samples for both Ureaplasma spp. and M. hominis. Levofloxacin resistance rates, mediated by Ser83Leu mutation in ParC, for Ureaplasma spp. were 0.54%. Tetracycline resistance rates, mediated by tet(M), were 0.54% and 2% for Ureaplasma spp. and M. hominis, respectively; sequence analysis of tet(M)-positive Ureaplasma spp. and M. hominis strains isolated from a single individual confirmed separate resistance gene origins. The MYCO WELL D-ONE is a sensitive and specific assay for the detection of Ureaplasma spp. and M. hominis in genitourinary medicine samples, facilitating the accurate detection of these organisms within low-technology environments. While good for antibiotic resistance screening, accurate confirmation by MIC determination or molecular methods are required, and more optimally performed on urine samples

    Determination of in vitro antimicrobial susceptibility for Lefamulin (Pleuromutilin) for Ureaplasma Spp. and Mycoplasma hominis

    Get PDF
    Lefamulin is the first of the pleuromutilin class of antimicrobials to be available for therapeutic use in humans. Minimum inhibitory concentrations of lefamulin were determined by microbroth dilution for 90 characterised clinical isolates (25 Ureaplasma parvum, 25 Ureaplasma urealyticum, and 40 Mycoplasma hominis). All Mycoplasma hominis isolates possessed lefamulin MICs of ≤0.25 mg/L after 48 h (MIC50/90 of 0.06/0.12 mg/L), despite an inherent resistance to macrolides; while Ureaplasma isolates had MICs of ≤2 mg/L after 24 h (MIC50/90 of 0.25/1 mg/L), despite inherent resistance to clindamycin. Two U. urealyticum isolates with additional A2058G mutations of 23S rRNA, and one U. parvum isolate with a R66Q67 deletion (all of which had a combined resistance to macrolides and clindamycin) only showed a 2-fold increase in lefamulin MIC (1–2 mg/L) relative to macrolide-susceptible strains. Lefamulin could be an effective alternative antimicrobial for treating Ureaplasma spp. and Mycoplasma hominis infections irrespective of intrinsic or acquired resistance to macrolides, lincosamides, and ketolides. Based on this potent in vitro activity and the known good, rapid, and homogenous tissue penetration of female and male urogenital tissues and glands, further exploration of clinical efficacy of lefamulin for the treatment of Mycoplasma and Ureaplasma urogenital infections is warranted

    Legionella antimicrobial sensitivity testing: comparison of microbroth dilution with BCYE and LASARUS solid media

    Get PDF
    Objectives There is a lack of international unification for AST methodology for Legionella pneumophila. Current literature contains multiple possible methods and this study compares each of them to determine methodological concordance. Methods Antibiotic susceptibility of 50 L. pneumophila strains was determined using broth microdilution (BMD), serial antimicrobial dilution in traditional buffered charcoal yeast extract (BCYE) agar (as well as comparison with gradient strip overlay on BCYE) and in a novel charcoal-free agar (LASARUS) for rifampicin, azithromycin, levofloxacin and doxycycline. Results The deviation of tested media relative to BMD highlighted the overall similarity of BMD and LASARUS across all antimicrobials tested (within one serial dilution). BCYE agar dilution showed an increased MIC of up to five serial dilutions relative to BMD, while MICs by gradient strip overlay on BCYE were elevated by two to three serial dilutions, with the exception of doxycycline, which was decreased by three serial dilutions relative to MIC values determined by BMD. The MIC range for azithromycin was wider than for other antimicrobials tested and found to be caused by the presence or absence of the lpeAB gene. Conclusions BMD-based antimicrobial susceptibility testing (AST) methodology should be the internationally agreed gold standard for Legionella spp. AST, as is common for other bacterial species. Traditional BCYE gave significantly elevated MIC results and its use should be discontinued for Legionella spp., while MIC determination using LASARUS solid medium gave results concordant (within one serial dilution) with BMD for all antimicrobials tested. To the best of our knowledge, this study is the first to identify the lpeAB gene in UK isolates

    Identifying large-scale recombination and capsular switching events in Streptococcus agalactiae strains causing disease in adults in the UK between 2014 and 2015

    Get PDF
    Cases of invasive group B streptococcal infection in the adult UK population have steadily increased over recent years, with the most common serotypes being V, III and Ia, but less is known of the genetic background of these strains. We have carried out in-depth analysis of the whole-genome sequences of 193 clinically important group B Streptococcus (GBS) isolates (184 were from invasive infection, 8 were from non-invasive infection and 1 had no information on isolation site) isolated from adults and submitted to the National Reference Laboratory at the UK Health Security Agency between January 2014 and December 2015. We have determined that capsular serotypes III (26.9%), Ia (26.4%) and V (15.0%) were most commonly identified, with slight differences in gender and age distribution. Most isolates (n=182) grouped to five clonal complexes (CCs), CC1, CC8/CC10, CC17, CC19 and CC23, with common associations between specific serotypes and virulence genes. Additionally, we have identified large recombination events mediating potential capsular switching events between sequence type (ST)1 serotype V and serotypes Ib (n=2 isolates), II (n=2 isolates) and VI (n=2 isolates); between ST19 serotype III and serotype V (n=5 isolates); and between CC17 serotype III and serotype IV (n=1 isolate). The high genetic diversity of disease-causing isolates and multiple recombination events reported in this study highlight the need for routine surveillance of the circulating disease-causing GBS strains. This information is crucial to better understand the global spread of GBS serotypes and genotypes, and will form the baseline information for any future GBS vaccine research in the UK and worldwide

    Comparing long-read assemblers to explore the potential of a sustainable low-cost, low-infrastructure approach to sequence antimicrobial resistant bacteria with Oxford nanopore sequencing

    Get PDF
    Long-read sequencing (LRS) can resolve repetitive regions, a limitation of short read (SR) data. Reduced cost and instrument size has led to a steady increase in LRS across diagnostics and research. Here, we re-basecalled FAST5 data sequenced between 2018 and 2021 and analyzed the data in relation to gDNA across a large dataset (n = 200) spanning a wide GC content (25–67%). We examined whether re-basecalled data would improve the hybrid assembly, and, for a smaller cohort, compared long read (LR) assemblies in the context of antimicrobial resistance (AMR) genes and mobile genetic elements. We included a cost analysis when comparing SR and LR instruments. We compared the R9 and R10 chemistries and reported not only a larger yield but increased read quality with R9 flow cells. There were often discrepancies with ARG presence/absence and/or variant detection in LR assemblies. Flye-based assemblies were generally efficient at detecting the presence of ARG on both the chromosome and plasmids. Raven performed more quickly but inconsistently recovered small plasmids, notably a ∼15-kb Col-like plasmid harboring blaKPC. Canu assemblies were the most fragmented, with genome sizes larger than expected. LR assemblies failed to consistently determine multiple copies of the same ARG as identified by the Unicycler reference. Even with improvements to ONT chemistry and basecalling, long-read assemblies can lead to misinterpretation of data. If LR data are currently being relied upon, it is necessary to perform multiple assemblies, although this is resource (computing) intensive and not yet readily available/useable

    Mycoplasma genitalium prevalence in Welsh sexual health patients: low antimicrobial resistance markers and no association of symptoms to bacterial load

    Get PDF
    Objectives Mycoplasma genitalium (MG) is a common cause of sexually transmitted infection, however no prevalence data is available for Wales. MG was detected by qPCR (quantitative) as well as two separate SpeeDx commercial assays, and related to clinical symptoms, age, gender and sample type. Methods Cervical swabs, urethral swabs and/or urine were collected from 1000 patients at walk-in sexual health clinics at 3 Welsh health centres from October 2017–October 2018. Extracted DNA was investigated to determine concordance between an in-house quantitative PCR, SpeeDx ResistancePlus® MG and the SpeeDx MG + parC (beta 2) assays; mutations in parC were substantiated by Sanger sequencing. Results MG was detected in 17/600 female patients (2.7%) and 13/400 (3.5%) male patients, with a 100% concordance between in-house qPCR and both SpeeDx assays. Macrolide resistance was low (relative to other studies), but more common in males (4/13; 30.8%) than females (2/17; 11.8%) and the only fluoroquinolone resistant sample (3.4% overall) was also macrolide resistant and detected from an MSM. Vaginitis was clinically apparent in 12/17 MG-positive females (2 with additional cervicitis, 1 with additional pelvic inflammatory disease), while 7 MG-positive males were asymptomatic. MG bacterial load did not correlate to clinical symptoms and females (4559 ± 1646/ml) had significantly lower MG load than males (84,714 ± 41,813/ml; p = 0.0429). Conclusions MG prevalence and antibiotic resistance in Welsh sexual health clinics is low. MG bacterial load did not correlate to clinical presentation, men have higher MG load/ml in urine than women, genders have different age bias for MG prevalence and urine and swabs are equivalent for detecting MG

    Intrauterine Candida albicans infection causes systemic fetal candidiasis with progressive cardiac dysfunction in a sheep model of early pregnancy

    Get PDF
    Introduction: Several recent studies have identified a potential role for intrauterine Candida albicans in adverse pregnancy outcomes, including preterm birth. There is, however, a limited understanding of the impact of intrauterine candida infection on fetal well-being in early pregnancy. Using a sheep model of early pregnancy, the aims of this study were to determine (1) the ability of experimentally induced intrauterine C albicans to infect the fetus and (2) whether C albicans exposure in early pregnancy is associated with alterations in fetal cardiac function, as measured by spectral tissue Doppler imaging analysis of fetal cardiac function. Methods: Merino ewes carrying singleton pregnancies at 89 days’ gestation (term is ∼150 days) received C albicans (n = 8) via ultrasound-guided intra-amniotic injection. Saline-exposed fetuses served as controls (n = 6). Spectral tissue Doppler imaging echocardiography and amniotic fluid collection were performed at baseline and 24 and 72 hours after intrauterine C albicans injection. Fetal tissues were collected at postmortem for analysis of infection and inflammation. Results: Relative to saline control, intrauterine C albicans infection resulted in pronounced increases in amniotic fluid tumor necrosis factor α (TNF-α; P < .05) and cytokine/chemokine messenger RNA (interleukin [IL] 1β, IL-6, TNF-α, and monocyte chemoattractant protein 1; P < .05) in the fetal myocardium, lung, skin, and liver at 72 and 96 hours postinfection. Spectral tissue Doppler imaging showed diastolic dysfunction at 24 hours and severe biventricular diastolic dysfunction 72 hours postinfection. Conclusion: Intrauterine C albicans infection in a sheep model of early pregnancy causes systemic fetal candidiasis, which is associated with a robust systemic inflammatory response and progressive cardiac dysfunction detectable by spectral tissue Doppler imaging

    Antibiotic resistance among clinical Ureaplasma isolates from Cuban individuals between 2013 and 2018

    Get PDF
    Introduction. Acquired resistance against the antibiotics that are active against Ureaplasma species has been described. Hypothesis/Gap Statement. Diagnostics combined with antimicrobial sensitivity testing are required for therapeutic guidance. Aim. To report the prevalence of antimicrobial resistance among Cuban Ureaplasma isolates and the related molecular mechanisms of resistance. Methodology. Traditional broth microdilution assays were used for antimicrobial sensitivity testing in 262 clinical Ureaplasma species isolates from Cuban patients between 2013 and 2018, and a subset of samples were investigated in parallel with the commercial MYCO WELL D-ONE rapid culture diagnostic assay. The underlying molecular mechanisms for resistance were determined by PCR and sequencing for all resistant isolates. Results. Among the tested isolates, the tetracycline and erythromycin resistance rates were 1.9 and 1.5%, respectively, while fluoroquinolone resistance was not found. The tet(M) gene was found in all tetracycline-resistant isolates, but also in two tetracycline-susceptible Ureaplasma clinical isolates. We were unable to determine the underlying mechanism of erythromycin resistance. The MYCO WELL D-ONE kit overestimated tetracycline and erythromycin resistance in Ureaplasma spp. isolates. Conclusions. Although low levels of antibiotic resistance were detected in Cuban patients over a 5-year period, continued surveillance of the antibiotic susceptibility of Ureaplasma is necessary to monitor possible changes in resistance patterns

    Defining fluoroquinolone resistance-mediating mutations from non-resistance polymorphisms in Mycoplasma hominis Topoisomerases

    Get PDF
    Often dismissed as a commensal, Mycoplasma hominis is an increasingly prominent target of research due to its role in septic arthritis and organ transplant failure in immunosuppressed patients, particularly lung transplantation. As a mollicute, its highly reductive genome and structure render it refractile to most forms of treatment and growing levels of resistance to the few sources of treatment left, such as fluoroquinolones. We examined antimicrobial susceptibility (AST) to fluoroquinolones on 72 isolates and observed resistance in three (4.1%), with corresponding mutations in the quinolone resistance-determining region (QRDR) of S83L or E87G in gyrA and S81I or E85V in parC. However, there were high levels of polymorphism identified between all isolates outside of the QRDR, indicating caution for a genomics-led approach for resistance screening, particularly as we observed a further two quinolone-susceptible isolates solely containing gyrA mutation S83L. However, both isolates spontaneously developed a second spontaneous E85K parC mutation and resistance following prolonged incubation in 4 mg/L levofloxacin for an extra 24–48 h. Continued AST surveillance and investigation is required to understand how gyrA QRDR mutations predispose M. hominis to rapid spontaneous mutation and fluoroquinolone resistance, absent from other susceptible isolates. The unusually high prevalence of polymorphisms in M. hominis also warrants increased genomics’ surveillance
    • …
    corecore