6 research outputs found

    Photonuclear reactions in astrophysical p-process: Theoretical calculations and experiment simulation based on ELI-NP

    No full text
    The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s-and r-processes. In the present study, the astrophysical reaction rates of (γ,n), (γ,p), and (γ,α) reactions are computed within the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12 < Z < 110. The nuclear structure ingredients involved in the calculation are determined from experimental data whenever available and, if not, from global microscopic nuclear models. In particular, both of the Wood-Saxon potential and the double folding potential with density dependent M3Y (DDM3Y) effective interaction are used for the calculations. It is found that the photonuclear reaction rates are very sensitive to the nuclear potential, and the better determination of nuclear potential would be important to reduce the uncertainties of reaction rates. Meanwhile, the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.SCOPUS: cp.pinfo:eu-repo/semantics/publishe

    Photonuclear reactions in astrophysical p-process: Theoretical calculations and experiment simulation based on ELI-NP

    No full text
    The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the astrophysical reaction rates of (γ,n), (γ,p), and (γ,α) reactions are computed within the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12 < Z < 110. The nuclear structure ingredients involved in the calculation are determined from experimental data whenever available and, if not, from global microscopic nuclear models. In particular, both of the Wood-Saxon potential and the double folding potential with density dependent M3Y (DDM3Y) effective interaction are used for the calculations. It is found that the photonuclear reaction rates are very sensitive to the nuclear potential, and the better determination of nuclear potential would be important to reduce the uncertainties of reaction rates. Meanwhile, the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising

    Photoneutron reactions in nuclear astrophysics

    No full text
    Highly-monochromatic γ-ray beams are produced at the NewSUBARU synchrotron radiation facility by the inverse Compton scattering of laser photons from relativistic electrons. The latest s-process study in nuclear astrophysics with the γ-ray beam is presented.SCOPUS: cp.jinfo:eu-repo/semantics/publishe

    Photoneutron cross section measurements on Sm isotopes

    No full text
    The Extreme Light Infrastructure - Nuclear Physics, one of the three pillars of the Extreme Light Infrastructure Pan-European initiative, is a new large scale facility dedicated to nuclear physics with extreme electromagnetic fields. ELI-NP will host two 10 PW lasers and a very brilliant Gamma beam system with unprecedented intensity and energy resolution parameters. We propose to perform photon induced nuclear reactions using the very brilliant γ-ray beams provided by the Gamma beam system to examine in detail the photon absorption process and its decay modes. Here the experimental program related to nuclear research on reactions above the neutron separation threshold, which is under preparation at ELI-NP, is presented.SCOPUS: cp.pinfo:eu-repo/semantics/publishe

    10 PW Peak Power Laser at the Extreme Light Infrastructure Nuclear Physics – status updates

    No full text
    We have shown, for the first time in the world, the production of 10 PW peak power laser pulses and their propagation to an experimental area at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP). We are also steadily running the laser system for experimental campaigns, increasing the output power levels delivered for experiments and fine-tuning the parameters of the laser pulses, the operational procedures, and the operational teams. During our presentation, we will show the laser developments at ELI-NP emphasizing the 10 PW peak power demonstrations and the latest results for the HPLS beam delivery
    corecore