41 research outputs found
Recommended from our members
Liquid gallium cooling of silicon crystals in high intensity photon beam
The high-brilliance, insertion-device-based, photon beams of the next generation of synchrotron sources will deliver large thermal loads (1 kW to 10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and new cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in uhv conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium cooled silicon diffraction crystals with water cooled crystals. 2 refs., 16 figs., 1 tab
Recommended from our members
CT imaging of small animals using monochromatized synchrotron x rays
Rats and chicken embryos were imaged in vivo with a prototype Multiple Energy Computed Tomography (MECT) system using monochromatized x rays from the X17 superconducting wiggler at the National Synchrotron Light Source. The CT configuration coated of a horizontal low-divergence, fan-shaped beam, 70 mm wide and 0.5 mm high, and a subject rotating about a vertical aids. A linear-array high-purity Ge detector with 140 elements, each 0.5 mm wide and 6 mm thick, was used with a data acquisition system that provides a linear response over almost six orders of magnitude of detector current. The dual photon absorptiometry (DPA) algorithm was applied to images of the rat head acquired at 20 and 45 keV to obtain two new images, one representing the low-Z, and the other the intermediate-Z clement group. The results indicate that the contrast resolution and the quantification accuracy of the images improve stepwise; first, with the monochromatic beam and, second, the DPA method. The system is a prototype for a brain scanner
Thermische ontleding van calciumnitraat
Document(en) uit de collectie Chemische ProcestechnologieDelftChemTechApplied Science
Recommended from our members
Stepping motor adaptor actuator for a commercial uhv linear motion feedthrough
An adaptor coupling has been developed that will allow the attachment of a standard stepping motor to a precision commercial (Varian) uhv linear motion feedthrough. The assembly, consisting of the motor, motor adaptor, limit switches, etc. is clamped to the feedthrough body which can be done under vacuum conditions if necessary. With a 500 step/rev. stepping motor the resolution is 1.27 {mu}m per step. We presently use this assembly in a remote location for the precise positioning of a beam sensing monitor. 2 refs., 3 figs
Elucidating structural mechanisms for cordierite ceramic formation using synchrotron radiation
Cr₂O₃ is a common nucleating agent useful for forming ceramics from oxide glasses. In this study we have used a variety of synchrotron radiation techniques to examine the atomic structure, crystallinity and microstructure of a magnesium alumino-silicate glass ceramic whose composition is close to that of the mineral cordierite, Mg2Al4Si5O18. X-ray Absorption spectra on the Cr K-edge have been performed with samples that were heat treated at different temperatures and times to examine the metamorphosis of the nucleating site. This study reveals that Cr³⁺ is always octahedrally coordinated with oxygen. In addition, the second nearest neighbour environment changes from an amorphous, single shell of Al/Si, but upon crystallisation, develops into a well ordered Al/Mg shell indicative of the formation of a dilute Cr spinel phase. Powder X-ray Diffraction (XRD) patterns, however, reveal that the major phase initially precipitated (approximately 900°C) is a stuffed quartz and from the lattice parameters that the composition is SiO2-rich. With prolonged heat treatment a small quantity of a spinel phase emerges whose composition from its lattice parameter is close to MgAl2O4. Combined Small Angle X-ray Scattering (SAXS) and XRD establish that devitrification at these temperatures is associated with particles about 250A in size, on average. Energy dispersive powder diffraction patterns were collected in situ to observe changes in crystallinity with temperature and time. From these measurements the stuffed quartz phase identified at 900°C is found to be intermediate, being eventually replaced at higher temperatures by cordierite with a small quantity of spinel.6 page(s