6 research outputs found

    Temperature Variability and Mortality: A Multi-Country Study

    Get PDF
    Background: The evidence and method are limited for the associations between mortality and temperature variability (TV) within or between days. Objectives: We developed a novel method to calculate TV and investigated TV-mortality associations using a large multicountry data set. Methods: We collected daily data for temperature and mortality from 372 locations in 12 countries/regions (Australia, Brazil, Canada, China, Japan, Moldova, South Korea, Spain, Taiwan, Thailand, the United Kingdom, and the United States). We calculated TV from the standard deviation of the minimum and maximum temperatures during the exposure days. Two-stage analyses were used to assess the relationship between TV and mortality. In the first stage, a Poisson regression model allowing over-dispersion was used to estimate the community-specific TV-mortality relationship, after controlling for potential confounders. In the second stage, a meta-analysis was used to pool the effect estimates within each country. Results: There was a significant association between TV and mortality in all countries, even after controlling for the effects of daily mean temperature. In stratified analyses, TV was still significantly associated with mortality in cold, hot, and moderate seasons. Mortality risks related to TV were higher in hot areas than in cold areas when using short TV exposures (0–1 days), whereas TV-related mortality risks were higher in moderate areas than in cold and hot areas when using longer TV exposures (0–7 days). Conclusions: The results indicate that more attention should be paid to unstable weather conditions in order to protect health. These findings may have implications for developing public health policies to manage health risks of climate change. Citation: Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E, Coelho MS, Pan X, Kim H, Hashizume M, Honda Y, Guo YL, Wu CF, Zanobetti A, Schwartz JD, Bell ML, Overcenco A, Punnasiri K, Li S, Tian L, Saldiva P, Williams G, Tong S. 2016. Temperature variability and mortality: a multi-country study. Environ Health Perspect 124:1554–1559; http://dx.doi.org/10.1289/EHP14

    Projections of excess mortality related to diurnal temperature range under climate change scenarios:a multi-country modelling study

    No full text
    Abstract Background: Various retrospective studies have reported on the increase of mortality risk due to higher diurnal temperature range (DTR). This study projects the effect of DTR on future mortality across 445 communities in 20 countries and regions. Methods: DTR-related mortality risk was estimated on the basis of the historical daily time-series of mortality and weather factors from Jan 1, 1985, to Dec 31, 2015, with data for 445 communities across 20 countries and regions, from the Multi-Country Multi-City Collaborative Research Network. We obtained daily projected temperature series associated with four climate change scenarios, using the four representative concentration pathways (RCPs) described by the Intergovernmental Panel on Climate Change, from the lowest to the highest emission scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). Excess deaths attributable to the DTR during the current (1985–2015) and future (2020–99) periods were projected using daily DTR series under the four scenarios. Future excess deaths were calculated on the basis of assumptions that warmer long-term average temperatures affect or do not affect the DTR-related mortality risk. Findings: The time-series analyses results showed that DTR was associated with excess mortality. Under the unmitigated climate change scenario (RCP 8.5), the future average DTR is projected to increase in most countries and regions (by −0·4 to 1·6°C), particularly in the USA, south-central Europe, Mexico, and South Africa. The excess deaths currently attributable to DTR were estimated to be 0·2–7·4%. Furthermore, the DTR-related mortality risk increased as the long-term average temperature increased; in the linear mixed model with the assumption of an interactive effect with long-term average temperature, we estimated 0·05% additional DTR mortality risk per 1°C increase in average temperature. Based on the interaction with long-term average temperature, the DTR-related excess deaths are projected to increase in all countries or regions by 1·4–10·3% in 2090–99. Interpretation: This study suggests that globally, DTR-related excess mortality might increase under climate change, and this increasing pattern is likely to vary between countries and regions. Considering climatic changes, our findings could contribute to public health interventions aimed at reducing the impact of DTR on human health

    Predicted temperature-increase-induced global health burden and its regional variability

    No full text
    Abstract An increase in the global health burden of temperature was projected for 459 locations in 28 countries worldwide under four representative concentration pathway scenarios until 2099. We determined that the amount of temperature increase for each 100 ppm increase in global CO2 concentrations is nearly constant, regardless of climate scenarios. The overall average temperature increase during 2010–2099 is largest in Canada (1.16 °C/100 ppm) and Finland (1.14 °C/100 ppm), while it is smallest in Ireland (0.62 °C/100 ppm) and Argentina (0.63 °C/100 ppm). In addition, for each 1 °C temperature increase, the amount of excess mortality is increased largely in tropical countries such as Vietnam (10.34%p/°C) and the Philippines (8.18%p/°C), while it is decreased in Ireland (−0.92%p/°C) and Australia (−0.32%p/°C). To understand the regional variability in temperature increase and mortality, we performed a regression-based modeling. We observed that the projected temperature increase is highly correlated with daily temperature range at the location and vulnerability to temperature increase is affected by health expenditure, and proportions of obese and elderly population

    Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19:a three-stage modelling study

    No full text
    Abstract Background: Increased mortality risk is associated with short-term temperature variability: However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5° × 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000–19. Methods: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5° × 0·5° degrees from 2000–19. Temperature variability was calculated as the SD of the average of the same and previous days’ minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. Findings: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1753392 deaths (95% CI 1159 901–2357 718) were associated with temperature variability per year, accounting for 3·4% (2·2–4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7–5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3–10·4), followed by Europe (4·4%, 2·2–5·6) and Africa (3·3, 1·9–4·6). Interpretation: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability

    Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019:a three-stage modelling study

    No full text
    Abstract Background: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. Methods: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature–mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature–mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. Findings: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967–5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58–11·07) of all deaths (8·52% [6·19–10·47] were cold-related and 0·91% [0·56–1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60–87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000–03 to 2016–19, the global cold-related excess death ratio changed by −0·51 percentage points (95% eCI −0·61 to −0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13–0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. Interpretation: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios
    corecore