43 research outputs found

    Molecular Imaging and Theragnostics of Thyroid Cancers

    Get PDF
    SIMPLE SUMMARY: According to the American Cancer Society, approximately 53,000 new cases of thyroid cancer were diagnosed and more than 2200 people died from the disease in 2020. New developments in molecular imaging are significantly improving thyroid cancer diagnostics and therapy. Continuous research in molecular imaging techniques additionally contributes to an understanding of a variety of diseases and enables more efficient care of thyroid cancer patients. Molecular imaging-based personalized therapy has been a fascinating concept for individualized therapeutic strategy, which is able to attain the highest efficacy and reduce adverse effects in certain patients. Theragnostics, which integrates diagnostic testing to detect molecular targets for particular therapeutic modalities, is one of the key technologies that contributes to the success of personalized medicine. This review details the inception of molecular imaging and theragnostic applications for thyroid cancer management. ABSTRACT: Molecular imaging plays an important role in the evaluation and management of different thyroid cancer histotypes. The existing risk stratification models can be refined, by incorporation of tumor-specific molecular markers that have theranostic power, to optimize patient-specific (individualized) treatment decisions. Molecular imaging with varying radioisotopes of iodine (i.e., (131)I, (123)I, (124)I) is an indispensable component of dynamic and theragnostic risk stratification of differentiated carcinoma (DTC) while [(18)F]F-fluorodeoxyglucose ([(18)F]FDG) positron emission tomography/computed tomography (PET/CT) helps in addressing disease aggressiveness, detects distant metastases, and risk-stratifies patients with radioiodine-refractory DTC, poorly differentiated and anaplastic thyroid cancers. For medullary thyroid cancer (MTC), a neuroendocrine tumor derived from thyroid C-cells, [(18)F]F-dihydroxyphenylalanine (6-[(18)F]FDOPA) PET/CT and/or [(18)F]FDG PET/CT can be used dependent on serum markers levels and kinetics. In addition to radioiodine therapy for DTC, some theragnostic approaches are promising for metastatic MTC as well. Moreover, new redifferentiation strategies are now available to restore uptake in radioiodine-refractory DTC while new theragnostic approaches showed promising preliminary results for advanced and aggressive forms of follicular-cell derived thyroid cancers (i.e., peptide receptor radiotherapy). In order to help clinicians put the role of molecular imaging into perspective, the appropriate role and emerging opportunities for molecular imaging and theragnostics in thyroid cancer are discussed in our present review

    Free thyroxine measurement in clinical practice: how to optimize indications, analytical procedures, and interpretation criteria while waiting for global standardization

    Get PDF
    Thyroid dysfunctions are among the most common endocrine disorders and accurate biochemical testing is needed to confirm or rule out a diagnosis. Notably, true hyperthyroidism and hypothyroidism in the setting of a normal thyroid-stimulating hormone level are highly unlikely, making the assessment of free thyroxine (FT4) inappropriate in most new cases. However, FT4 measurement is integral in both the diagnosis and management of relevant central dysfunctions (central hypothyroidism and central hyperthyroidism) as well as for monitoring therapy in hyperthyroid patients treated with anti-thyroid drugs or radioiodine. In such settings, accurate FT4 quantification is required. Global standardization will improve the comparability of the results across laboratories and allow the development of common clinical decision limits in evidence-based guidelines. The International Federation of Clinical Chemistry and Laboratory Medicine Committee for Standardization of Thyroid Function Tests has undertaken FT4 immunoassay method comparison and recalibration studies and developed a reference measurement procedure that is currently being validated. However, technical and implementation challenges, including the establishment of different clinical decision limits for distinct patient groups, still remain. Accordingly, different assays and reference values cannot be interchanged. Two-way communication between the laboratory and clinical specialists is pivotal to properly select a reliable FT4 assay, establish reference intervals, investigate discordant results, and monitor the analytical and clinical performance of the method over time

    Wnt signaling in triple-negative breast cancer

    Get PDF
    Wnt signaling regulates a variety of cellular processes, including cell fate, differentiation, proliferation and stem cell pluripotency. Aberrant Wnt signaling is a hallmark of many cancers. An aggressive subtype of breast cancer, known as triple-negative breast cancer (TNBC), demonstrates dysregulation in canonical and non-canonical Wnt signaling. In this review, we summarize regulators of canonical and non-canonical Wnt signaling, as well as Wnt signaling dysfunction that mediates the progression of TNBC. We review the complex molecular nature of TNBC and the emerging therapies that are currently under investigation for the treatment of this disease

    Multigene expression signatures in early hormone receptor positive HER 2 negative breast cancer

    No full text
    The standard treatment of hormone receptor positive, HER2 negative early breast cancer (BC) is surgery followed by adjuvant systemic therapy either with endocrine therapy alone or with the addition of chemotherapy followed by endocrine therapy. Adjuvant systemic therapy reduces the risk of recurrence and death from BC. Whether an individual patient will benefit from adjuvant chemotherapy is an important clinical decision. Decisions that rely solely on clinical-pathological factors can often lead to overtreatment. Multigene signatures represent an important progress in optimal selection of high risk patients that might benefit from the addition of chemotherapy to adjuvant endocrine therapy

    Efficacy of tyrosine kinase inhibitors in routine clinical practice: Epidermal growth factor mutations and their implications

    No full text
    Background: Activating mutations in the epidermal growth factor (EGFR) gene confer sensitivity to the tyrosine kinase inhibitors (TKIs) in patients with advanced non-small cell lung cancer (NSCLC). TKI treatment efficacy and EGFR mutation implications were evaluated in clinically selected advanced NSCLC patients treated with TKIs in routine clinical practice. Materials and Methods: A retrospective chart review for clinicopathological characteristics and mutation status (EGFR, KRAS) analysis of 40 consecutive patients treated with TKIs between 2005 and 2010 was performed. Statistical Analysis Used: PFS and OS were estimated by the Kaplan-Meier method, the log-rank test was used to test for differences. The strength of the associations between the EGFR mutation status and clinicopathological characteristics were tested with the Mann-Whitney U-test or the Kruskal-Wallis H-test. Results: The prevalence of EGFR mutations was 45% with a predominance of deletion mutations in exon 19 (55.5%). Significant correlations between gender, histology, and EGFR mutations were observed. Median progression-free survival (mPFS) for the entire group of patients was 8.7 months and median overall survival (mOS) was not yet reached. Patients with EGFR mutant tumors derived significantly higher benefit from TKI therapy compared to patients with mutation-negative disease; with mPFS of 22.0 vs. 3.2 months (HR: 3.9, 95% CI 1.56-9.89) and with a trend towards better OS (probability of survival at 12 months 82.0 vs. 63.0%, P = 0.080). Conclusion: We demonstrated that screening for EGFR mutations is reliable in a routine clinical setting and might allow for a better selection of NSCLC patients for anti-EGFR TKI therapy

    New! F-18-based PET/CT for sodium-iodine-symporter-targeted imaging!

    No full text
    Purpose!#!Myocardial infarction (MI) triggers a local inflammatory response which orchestrates cardiac repair and contributes to concurrent neuroinflammation. Angiotensin-converting enzyme (ACE) inhibitor therapy not only attenuates cardiac remodeling by interfering with the neurohumoral system, but also influences acute leukocyte mobilization from hematopoietic reservoirs. Here, we seek to dissect the anti-inflammatory and anti-remodeling contributions of ACE inhibitors to the benefit of heart and brain outcomes after MI.!##!Methods!#!C57BL/6 mice underwent permanent coronary artery ligation (n = 41) or sham surgery (n = 9). Subgroups received ACE inhibitor enalapril (20 mg/kg, oral) either early (anti-inflammatory strategy; 10 days treatment beginning 3 days prior to surgery; n = 9) or delayed (anti-remodeling; continuous from 7 days post-MI; n = 16), or no therapy (n = 16). Cardiac and neuroinflammation were serially investigated using whole-body macrophage- and microglia-targeted translocator protein (TSPO) PET at 3 days, 7 days, and 8 weeks. In vivo PET signal was validated by autoradiography and histopathology.!##!Results!#!Myocardial infarction evoked higher TSPO signal in the infarct region at 3 days and 7 days compared with sham (p < 0.001), with concurrent elevation in brain TSPO signal (+ 18%, p = 0.005). At 8 weeks after MI, remote myocardium TSPO signal was increased, consistent with mitochondrial stress, and corresponding to recurrent neuroinflammation. Early enalapril treatment lowered the acute TSPO signal in the heart and brain by 55% (p < 0.001) and 14% (p = 0.045), respectively. The acute infarct signal predicted late functional outcome (r = 0.418, p = 0.038). Delayed enalapril treatment reduced chronic myocardial TSPO signal, consistent with alleviated mitochondrial stress. Early enalapril therapy tended to lower TSPO signal in the failing myocardium at 8 weeks after MI (p = 0.090) without an effect on chronic neuroinflammation.!##!Conclusions!#!Whole-body TSPO PET identifies myocardial macrophage infiltration and neuroinflammation after MI, and altered cardiomyocyte mitochondrial density in chronic heart failure. Improved chronic cardiac outcome by enalapril treatment derives partially from acute anti-inflammatory activity with complementary benefits in later stages. Whereas early ACE inhibitor therapy lowers acute neuroinflammation, chronic alleviation is not achieved by early or delayed ACE inhibitor therapy, suggesting a more complex mechanism underlying recurrent neuroinflammation in ischemic heart failure

    Thyroglobulin and thyroglobulin antibody:an updated clinical and laboratory expert consensus

    Get PDF
    OBJECTIVE: Thyroglobulin measurement is the cornerstone of modern management of differentiated thyroid cancer, with clinical decisions on treatment and follow-up based on the results of such measurements. However, numerous factors need to be considered regarding measurement with and interpretation of thyroglobulin assay results. DESIGN: The present document provides an integrated update to the 2013 and 2014 separate clinical position papers of our group on these issues. METHODS: Issues concerning analytical and clinical aspects of highly-sensitive thyroglobulin measurement will be reviewed and discussed based on an extensive analysis of the available literature. RESULTS: Thyroglobulin measurement remains a highly complex process with many pitfalls and major sources of interference, especially anti-thyroglobulin antibodies, need to be assessed, considered and, when necessary, dealt with appropriately. CONCLUSIONS: Our expert consensus group formulated 53 practical, graded recommendations for guidance on highly-sensitive thyroglobulin and TgAb in laboratory and clinical practice, especially valuable where current guidelines do not offer sufficient guidance.</p
    corecore