13 research outputs found

    Evolution of Novel Signal Traits in the Absence of Female Preferences in Neoconocephalus Katydids (Orthoptera, Tettigoniidae)

    Get PDF
    Background Significance: Communication signals that function to bring together the sexes are important for maintaining reproductive isolation in many taxa. Changes in male calls are often attributed to sexual selection, in which female preferences initiate signal divergence. Natural selection can also influence signal traits if calls attract predators or parasitoids, or if calling is energetically costly. Neutral evolution is often neglected in the context of acoustic communication. Methodology/Principal Findings: We describe a signal trait that appears to have evolved in the absence of either sexual or natural selection. In the katydid genus Neoconocephalus, calls with a derived pattern in which pulses are grouped into pairs have evolved five times independently. We have previously shown that in three of these species, females require the double pulse pattern for call recognition, and hence the recognition system of the females is also in a derived state. Here we describe the remaining two species and find that although males produce the derived call pattern, females use the ancestral recognition mechanism in which no pulse pattern is required. Females respond equally well to the single and double pulse calls, indicating that the derived trait is selectively neutral in the context of mate recognition. Conclusions/Significance: These results suggest that 1) neutral changes in signal traits could be important in the diversification of communication systems, and 2) males rather than females may be responsible for initiating signa

    Chromatic Signals Control Proboscis Movements during Hovering Flight in the Hummingbird Hawkmoth Macroglossum stellatarum

    Get PDF
    Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general

    Size discrimination of hollow hemispheres by echolocation in a nectar feeding bat

    No full text
    Nectar feeding bats use echolocation to find their flowers in the dense growth of tropical rainforests, and such flowers have evolved acoustic features that make their echo more conspicuous to their pollinators. To shed light on the sensory and cognitive basis of echoacoustic object recognition we conducted a size discrimination experiment with the nectarivorous bat Glossophaga soricina and compared the bats' behavioural performance with the echoic features of the training objects. We chose a simple geometric form, the hollow hemisphere, as the training object because of its resemblance to the bell-shaped concave form of many bat flowers, as well as its special acoustic qualities. The hemispheres showed a characteristic echo pattern, which was constant over a wide range of angles of sound incidence. We found systematic size-dependent changes in the echo's temporal and spectral pattern as well as in amplitude. Bats were simultaneously confronted with seven different sizes of hollow hemispheres presented from their concave sides. Visits to one particular size were rewarded with sugar water, while we recorded the frequency of visits to the unrewarded hemispheres. We found that: (1) bats learned to discriminate between hemispheres of different size with ease; (2) the minimum size difference for discrimination was a constant percentage of the hemisphere's size (Weber fraction: approximately 16% of the radius); (3) the comparison of behavioural data and impulse response measurements of the objects' echoes yielded discrimination thresholds for mean intensity differences (1.3 dB), the temporal pattern (3-22 μs) and the change of spectral notch frequency (approximately 16%). We discuss the advantages of discrimination in the frequency and/or time domain

    Sound production during agonistic behavior of male Drosophila melanogaster

    No full text
    Male Drosophila fruit flies acquire and defend territories in order to attract females for reproduction. Both, male-directed agonistic behavior and female-directed courtship consist of series of recurrent stereotypical components. Various studies demonstrated the importance of species-specific sound patterns generated by wing vibration as being critical for male courtship success. In this study we analyzed the patterns and importance of sound signals generated during agonistic interactions of male Drosophila melanogaster. In contrast to acoustic courtship signals that consist of sine and pulse patterns and are generated by one extended wing, agonistic signals lack sine-like components and are generally produced by simultaneous movements of both wings. Though intra-pulse oscillation frequencies (carrier frequency) are identical, inter-pulse intervals are twice as long and more variable in aggression signals than in courtship songs, where their precise temporal pattern serves species recognition. Acoustic signals accompany male agonistic interactions over their entire course but occur particularly often after tapping behavior which is a major way to identify the gender of the interaction partner. Since similar wing movements may either be silent or generate sound and wing movements with sound have a greater impact on the subsequent behavior of a receiver, sound producing wing movements seem to be generated intentionally to serve as a specific signal during fruit fly agonistic encounters

    Rediscovery of the enigmatic solifuges (Arachnida: Solifugae) at Lampedusa Island (Italy)

    Get PDF
    Solifuges were recorded in Italy for the first time in 1956, on the island of Lampedusa (Strait of Sicily), and classified as Biton ehrenbergi Karsch, 1880 and Biton velox Simon, 1885. More than 60 years later, we carried out the first targeted investigation of these little-known animals. A survey conducted during both spring and autumn 2017 confirmed the presence of solifuges on Lampedusa Island. We identified all specimens as B. velox and not B. ehrenbergi. We concluded that B. ehrenbergi is absent from the island, on the basis of both newly collected data and a re-evaluation of the past records. Morphology and taxonomic position of the examined specimens are discussed in light of the unresolved state within the family Daesiidae Kraepelin 1899. Fifteen potentially suitable habitats were investigated across the entire island during 240 transects with standardised time-constrained searches (TCSs) of 30 minutes each. The survey documented a current habitat specificity of the solifuge population, as they were recorded only in the south-eastern coasts, where the local phrygana association, rich in endemic plant species, is still intact
    corecore