23 research outputs found

    Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in <i>Lactuca sativa</i>

    Get PDF
    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. ’Batavia’ (green) and cv. ‘Lollo Rossa’ (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) ”mol m-2 s-1 for up to 20 hr, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 ”mol m-2 s-1 from 06:00 to 08:00), 1B 21-08 (Blue light at 45 ”mol m-2 s-1 from 21:00 to 08:00), 2B 17-19 (Blue at 80 ”mol m-2 s-1 from 17:00 to 19:00), and (1B 17-19) Blue at 45 ”mol m-2 s-1from 17:00 to 19:00. Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent

    Effects of continuous spectrum LEDs used in indoor cultivation of two coniferous species Pinus sylvestris L. and Abies borisii-regis Mattf

    No full text
    The effects of four different continuous spectrum LED light qualities on the growth characteristics of Pinus sylvestris L. (PS) and Abies borisii-regis Mattf. (AB) seedlings were studied. The seedlings were exposed for 35 days inside growth chambers to G2 (high in red and far-red), AP67 (high in blue and far-red), AP67-ARCH (high in green), and NS2 (high in blue including a small percentage in the UV area) LEDs, as well as fluorescent light (FL) as Control. Each species showed a unique light-adapted response. G2 treatment stimulated needle formation of PS seedlings, while AB seedlings were unaffected. Hypocotyl elongation was promoted by FL; however, LEDs resulted in compact plants with greater root development, especially under the AP67-ARCH and AP67 spectra for PS and AB, respectively. In PS, AP67-ARCH and G2 significantly increased dry weight, while AB was affected significantly by AP67 and NS2. Furthermore, root growth potential of both species was better after LED pre-cultivation than the FL. Therefore, the use of continuous spectrum LEDs can enhance desirable quality characteristics of seedlings, which may be advantageous in large scale seedling production for reforestation

    Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success

    Get PDF
    The morphological and phytochemical characteristics of two Ocimum basilicum cultivars (Lettuce Leaf, and Red Rubin-mountain Athos hybrid) under artificial lighting were investigated. Four LED light treatments [AP673L (high red and high red:far-red), G2 (high red and low red:far-red), AP67 (moderate blue and red and low red:far-red), and NS1 (high blue and green, high red:far-red and 1% ultraviolet)] with different colors mixing UV, blue, green, red and far-red, and fluorescent tubes (FL, high blue, green and red:far-red) as Control were used in the growth chambers for 28 days under PPFD of 200±20Όmolm-2s-1 for all treatments at plant height. G2, Control and AP67 treatments for Lettuce Leaf, and G2 for Red Rubin hybrid had higher growth rate. Roots of Lettuce Leaf were significantly longer under AP673L compared to NS1, while Red Rubin hybrid showed no significant differences. Total biomass was significantly greater under NS1, AP67 and G2 compared to the Control, for both cultivars. For both Lettuce Leaf and Red Rubin hybrid, root:shoot ratio (R/S) was favored under NS1, whereas the Control had the lowest impact. Leaf area of both cultivars was greater under the Control. Root growth capacity evaluation was also assessed. Seedlings of Lettuce Leaf cultivated under the effect of the Control and AP673L, and seedlings of Red Rubin hybrid grown under AP673L (mainly) quickly developed new root system. This could offer the advantage of fast exploitation of larger soil volume after transplanting. Total phenolic content of Lettuce Leaf was significantly higher under NS1 compared to the rest of the treatments, while in Red Rubin hybrid, NS1 had significantly higher total phenolic content compared to the Control and G2. Our study demonstrates that LEDs variably affected growth characteristics and increased total phenolic content compared to conventional fluorescent light for these two O. basilicum cultivars.</p

    Continuous Spectrum LEDs Promote Seedling Quality Traits and Performance of Quercus ithaburensis var. macrolepis

    Get PDF
    Regulation of the growth, development, and quality of plants by the control of light quality has attracted extensive attention worldwide. The aim of this study was to examine the effects of continuous LED spectrum for indoor plant pre-cultivation and to investigate the morphological and physiological responses of a common broadleaved tree species in Mediterranean environment, Quercus ithaburensis var. macrolepis at seedling developmental stage. Thus, the seedlings were pre-cultivated for 28 days, under five different LED light qualities: (1) Fluorescent (FL) as control light (2) L20AP67 (high in green and moderate in far-red), (3) AP673L (high in green and red), (4) G2 (highest in red and far-red), AP67 (high in blue, red, and far-red), and (5) NS1 (highest in blue and green and lowest in far-red) LEDs. Further examination was held at the nursery for 1 year, on several seedling quality traits. Indeed, AP67 and AP673L triggered higher leaf formation, while L20AP67 positively affected seedling shoot development. NS1 and AP67 LED pre-cultivated seedlings showed significantly higher root fibrosity than those of FL light. Furthermore, NS1 and AP673L LEDs induced fourfold increase on seedling root dry weight than FL light. Hence, evaluating the seedling nursery performance attributes, most of those photomorphogenetic responses previously obtained were still detectable. Even more so, LED pre-cultivated seedlings showed higher survival and faster growth indicating better adaptation even under natural light conditions, a fact further reinforced by the significantly higher Dickson’s quality index acquired. In conclusion, the goal of each nursery management program is the production of high quality seedlings with those desirable traits, which in turn satisfy the specific needs for a particular reforestation site. Thus, the enhanced oak seedling quality traits formed under continuous LEDs spectrum especially of NS1 and AP673L pre-cultivation may potentially fulfill this goal

    LED or HPS in ornamentals? A case study in roses and campanulas

    No full text
    The aim of the experiment was to evaluate the effect of novel top-installed high-output light-emitting diodes (LEDs) on ornamental plant production both in terms of productivity and energy use in comparison with conventional HPS lamps in two standard greenhouse compartments. The experiments were performed in late winter period using three varieties of potted miniature roses (Rosa hybrida) and two cultivars of Campanula grown in identical installed supplemental light levels (75–85 ”mol m-2 s-1 of PPFD) with temperature set points 18°C at night, 24°C during the day, while 800 ppm of CO2 was supplied. Due to the winter being relatively cold, the set points were equal to the realized temperature as ventilation rarely occurred. The leaf temperature was maintained at the same level by adjusting the top pipe temperature. Two harvests were performed in February and in March to show the potential effect of winter-or early spring-grown plants. The results showed relatively small differences with respect to plant performance between the HPS and LED treatments, and most significant differences were found only in the 1st batch of roses harvested in February regarding plant height and stem fresh and dry weight, indicating that growth was favored under HPS lamps for three out of four cultivars. Both the 2nd batches for roses and campanulas harvested in March showed very limited or no differences between treatments. The energy saving on the electricity side was 60% in LEDs compared to HPS, but due to the increased heat use from top pipes the energy used for heating increased by around 50% over the whole experimental period.</p

    Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs)

    No full text
    Light-emitting diode (LED) technology has rapidly advanced the past years and it is nowadays irrevocably linked with controlled-environment agriculture (CEA). We provide here an amalgamation of the recent research achievements in the horticulture and floriculture industry, ranging from greenhouse applications to climate rooms and vertical farming. We hope this overview bestows ample examples for researchers and growers in the selection of the appropriate LED light solution for amending crop yield, phytochemical content, nutritional value, flowering control, transplant success, pre-harvest and postharvest product quality, and production of regeneration material. We leave the reader with some future prospects and directions that need to be taken into account in this ever-growing field
    corecore