9,263 research outputs found

    Equivalent-neighbor percolation models in two dimensions: crossover between mean-field and short-range behavior

    Get PDF
    We investigate the influence of the range of interactions in the two-dimensional bond percolation model, by means of Monte Carlo simulations. We locate the phase transitions for several interaction ranges, as expressed by the number zz of equivalent neighbors. We also consider the z→∞z \to \infty limit, i.e., the complete graph case, where percolation bonds are allowed between each pair of sites, and the model becomes mean-field-like. All investigated models with finite zz are found to belong to the short-range universality class. There is no evidence of a tricritical point separating the short-range and long-range behavior, such as is known to occur for q=3q=3 and q=4q=4 Potts models. We determine the renormalization exponent describing a finite-range perturbation at the mean-field limit as yr≈2/3y_r \approx 2/3. Its relevance confirms the continuous crossover from mean-field percolation universality to short-range percolation universality. For finite interaction ranges, we find approximate relations between the coordination numbers and the amplitudes of the leading correction terms as found in the finite-size scaling analysis

    Application of nanomaterials in two-terminal resistive-switching memory devices

    Get PDF
    Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs), nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well

    Cooling a mechanical resonator via coupling to a tunable double quantum dot

    Full text link
    We study the cooling of a mechanical resonator (MR) that is capacitively coupled to a double quantum dot (DQD). The MR is cooled by the dynamical backaction induced by the capacitive coupling between the DQD and the MR. The DQD is excited by a microwave field and afterwards a tunneling event results in the decay of the excited state of the DQD. An important advantage of this system is that both the energy level splitting and the decay rate of the DQD can be well tuned by varying the gate voltage. We find that the steady average occupancy, below unity, of the MR can be achieved by changing both the decay rate of the excited state and the detuning between the transition frequency of the DQD and the microwave frequency, in analogy to the laser sideband cooling of an atom or trapped ion in atomic physics. Our results show that the cooling of the MR to the ground state is experimentally implementable.Comment: 10 pages, 5 figure

    Numerical investigation on hydrodynamic performance of a novel shaftless rim-driven counter-rotating thruster considering gap fluid

    Get PDF
    Shaftless rim-driven thruster (RDT) has recently become the research focus for marine propulsion, primarily due to low vibration, low noise, and energy saving as its advantage. This study is based on CFD theory and used the Ansys-Fluent software to examine the hydrodynamic performance of a novel rim-driven counter-rotating thruster (RDCRT). It takes a No.19A+Ka4-70 duct propeller and a 20 kW RDT as examples, as it verifies the feasibility of the simulation method. It establishes three geometric models for RDCRT's hydrodynamic performance to determine whether it is necessary to consider the motor stator/rotor gap. It examines the flow distribution characteristics of the gap fluid friction force and flow channel and investigates the gap's influence on the hydrodynamic performance. Relevant case studies indicate that, when considering the gap, the calculation outcomes of the simulation model are between the stationary model and the rotational model of the rotor inner wall when ignoring the gap. In the Forward and Aft regions, the total frictional power of the gap channel correspondingly accounts for 1.7% and 1.35% of the rated power. Additionally, compared to situations with a gap, the pressure coefficient of the inner surface of the Forward and Aft rim without a gap is more significant. Thus, the hydrodynamic simulation model should not ignore the gap. For the RDCRT, the thrust coefficient, the torque coefficient, and the maximum efficiency value are more significant than those of the single-propeller RDT, hence validating its advantages

    Penta-Hepta Defect Motion in Hexagonal Patterns

    Full text link
    Structure and dynamics of penta-hepta defects in hexagonal patterns is studied in the framework of coupled amplitude equations for underlying plane waves. Analytical solution for phase field of moving PHD is found in the far field, which generalizes the static solution due to Pismen and Nepomnyashchy (1993). The mobility tensor of PHD is calculated using combined analytical and numerical approach. The results for the velocity of PHD climbing in slightly non-optimal hexagonal patterns are compared with numerical simulations of amplitude equations. Interaction of penta-hepta defects in optimal hexagonal patterns is also considered.Comment: 4 pages, Postscript (submitted to PRL

    Turing Instability in a Boundary-fed System

    Get PDF
    The formation of localized structures in the chlorine dioxide-idodine-malonic acid (CDIMA) reaction-diffusion system is investigated numerically using a realistic model of this system. We analyze the one-dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry-breaking perturbations (Turing instability) in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis which neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experiments.Comment: 41 pages, 18 figures, to be published in Physical Review

    Heat conduction in graphene flakes with inhomogeneous mass interface

    Full text link
    Using nonequilibrium molecular dynamics simulations, we study the heat conduction in graphene flakes composed by two regions. One region is mass-loaded and the other one is intact. It is found that the mass interface between the two regions greatly decreases the thermal conductivity, but it would not bring thermal rectification effect. The dependence of thermal conductivity upon the heat flux and the mass difference ratio are studied to confirm the generality of the result. The interfacial scattering of solitons is studied to explain the absence of rectification effect.Comment: 5 pages, 4 figure

    Experimental and numerical studies of the effects of a rail vibration absorber on suppressing short pitch rail corrugation

    Get PDF
    The effects of a rail vibration absorber on suppressing short pitch rail corrugation are studied. Firstly, a rail vibration field test is carried out to analyze the vibration response of the rail with and without the vibration absorbers. Secondly, based on the hypothesis that friction-induced self-excited vibration of a wheel-rail system causes rail corrugation; two finite element models of a wheel-rail system and a wheel-rail-absorber system are established and analyzed. Both sets of rail vibration test results and theoretical results show that the rail absorbers can effectively reduce the friction-induced self-excited vibration of the wheel-rail system in the frequency range of 200-800 Hz, which corresponds to frequencies of short pitch rail corrugation. This may be a main reason that the rail vibration absorber can suppress the formation of short pitch rail corrugation
    • 

    corecore