7,319 research outputs found

    Resonance tongues and patterns in periodically forced reaction-diffusion systems

    Full text link
    Various resonant and near-resonant patterns form in a light-sensitive Belousov-Zhabotinsky (BZ) reaction in response to a spatially-homogeneous time-periodic perturbation with light. The regions (tongues) in the forcing frequency and forcing amplitude parameter plane where resonant patterns form are identified through analysis of the temporal response of the patterns. Resonant and near-resonant responses are distinguished. The unforced BZ reaction shows both spatially-uniform oscillations and rotating spiral waves, while the forced system shows patterns such as standing-wave labyrinths and rotating spiral waves. The patterns depend on the amplitude and frequency of the perturbation, and also on whether the system responds to the forcing near the uniform oscillation frequency or the spiral wave frequency. Numerical simulations of a forced FitzHugh-Nagumo reaction-diffusion model show both resonant and near-resonant patterns similar to the BZ chemical system

    Water use patterns of forage cultivars in the North China Plain

    Full text link
    Water shortage is the primary limiting factor for crop production and long-term agricultural sustainability of the North China Plain. Forage cultivation emerged recently in this region. A fiveryear field experiment studies were conducted at Yucheng Integrated Experiment Station to quantify the water requirement and water use efficiency of seven forage varieties under climate variability, that is five annuals, i.e., ryegrass (Secale cereale L.), triticale (×Triticosecale Wittmack), sorghum hybrid sudangrass (Sorghum biolor × Sorghum Sudanense c.v.), ensilage corn (Zea mays L.), prince's feather (Amaranthus paniculatus L.) and two perennials alfalfa (Medicago sativa L.) and cup plant (Silphium perfoliatum L.). Average ET for five annual varieties ranged from 333 to 371 mm, significantly lower than that of the perennial varieties. ET of alfalfa is 789 mm, which is higher than that of cup plant. Ryegrass and triticale need 1.5 to 2.0 mm water per day, while others 2.9-4.4 mm. Ensilage corn and Sorghum hybrid sudangrass performed better as their irrigation demand is smaller in the dry seasons than others. Ryegrass needs 281 mm irrigation requirement, which is higher than triticale in dry years. Prince's feather is sensitive to climate change and it can be selected when rainfall is greater than 592.9 mm in the growing season. Mean WUE for prince's feather is 20 Kg ha -1 mm -1, for ensilage corn is 41 Kg ha -1 mm -1 and others is close to 26 Kg ha -1 mm -1. Our experiments indicate that excessive rain will reduce the production of alfalfae. The results of this experiment have implications for researchers and policy makers with water management strategy of forage cultivars and it also very useful in addressing climate change impact and adaptation issues

    Backaction of a charge detector on a double quantum dot

    Get PDF
    We develop a master equation approach to study the backaction of quantum point contact (QPC) on a double quantum dot (DQD) at zero bias voltage. We reveal why electrons can pass through the zero-bias DQD only when the bias voltage across the QPC exceeds a threshold value determined by the eigenstate energy difference of the DQD. This derived excitation condition agrees well with experiments on QPC-induced inelastic electron tunneling through a DQD [S. Gustavsson et al., Phys. Rev. Lett. 99, 206804(2007)]. Moreover, we propose a new scheme to generate a pure spin current by the QPC in the absence of a charge current.Comment: 6 pages, 4 figure

    Cooling a nanomechanical resonator by a triple quantum dot

    Full text link
    We propose an approach for achieving ground-state cooling of a nanomechanical resonator (NAMR) capacitively coupled to a triple quantum dot (TQD). This TQD is an electronic analog of a three-level atom in Λ\Lambda configuration which allows an electron to enter it via lower-energy states and to exit only from a higher-energy state. By tuning the degeneracy of the two lower-energy states in the TQD, an electron can be trapped in a dark state caused by destructive quantum interference between the two tunneling pathways to the higher-energy state. Therefore, ground-state cooling of an NAMR can be achieved when electrons absorb readily and repeatedly energy quanta from the NAMR for excitations.Comment: 6 pages, 3 figure

    Scalable Quantum Monte Carlo with Direct-Product Trial Wave Functions

    Full text link
    The computational demand posed by applying multi-Slater determinant trials in phaseless auxiliary-field quantum Monte Carlo methods (MSD-AFQMC) is particularly significant for molecules exhibiting strong correlations. Here, we propose using direct-product wave functions as trials for MSD-AFQMC, aiming to reduce computational overhead by leveraging the compactness of multi-Slater determinant trials in direct-product form (DP-MSD). This efficiency arises when the active space can be divided into non-coupling subspaces, a condition we term "decomposable active space". By employing localized-active space self-consistent field wave functions as an example of such trials, we demonstrate our proposed approach in various molecular systems. Our findings indicate that the compact DP-MSD trials can reduce computational costs substantially, by up to 36 times for the \ce{C2H6N4} molecule where the two double bonds between nitrogen \ce{N=N} are clearly separated by a \ce{C-C} single bond, while maintaining accuracy when active spaces are decomposable. However, for systems where these active subspaces strongly couple, a scenario we refer to as "strong subspace coupling", the method's accuracy decreases compared to that achieved with a complete active space approach. We anticipate that our method will be beneficial for systems with non-coupling to weakly-coupling subspaces that require local multireference treatments.Comment: 12 pages, 9 figure

    Enhanced optical properties of the GaAsN/GaAs quantum-well structure by the insertion of InAs monolayers

    No full text
    Microstructural and optical properties of InAs-inserted and reference single GaAsN/GaAs quantum-well (QW) structures grown by metalorganic chemical vapor deposition were investigated using cross-sectional transmission electron microscopy and photoluminescence (PL). Significant enhancement of PL intensity and a blueshift of PL emission were observed from the InAs-inserted GaAsN/GaAs QW structure, compared with the single GaAsN/GaAs QW structure. Strain compensation and In-induced reduction of N incorporation are suggested to be two major factors affecting the optical properties.The authors would like to thank the Commonwealth Department of Education, Science, and Training and the Australian Research Council for their financial support

    Treatment effect of Bushen Huayu extract on postmenopausal osteoporosis in vivo

    Get PDF
    Bushen Huayu extract (BSHY), a traditional Chinese medicine, has been demonstrated to treat postmenopausal osteoporosis, however, the underlying mechanism remains to be fully elucidated. The aim of the present study was to investigate the therapeutic effect of BSHY and the mechanisms underlying this effect in an in vivo postmenopausal osteoporosis animal model. A total of 1 g BSHY containing 7.12 μg icariin was prepared. Low-dose BSHY (BSHY-L; 11.1 g/kg), medium-dose BSHY (BSHY-M; 22.2 g/kg) and high-dose BSHY (BSHY-H; 44.4 g/kg) was administered to oophorectomized rats using intragastric infusion. Estradiol (E2), interleukin-6 (IL-6) and serum alkaline phosphatase (ALP) levels, as well as bone density, were determined. It was found that the levels of serum ALP in the BSHY-L, BSHY-M and BSHY-H groups (197.75±41.74, 166.63±44.83 and 165.63±44.90 IU/l, respectively) were significantly decreased compared with the model group (299.13±45.79 IU/l; P<0.05), whilst the levels of E2 (16.89±1.71, 17.95±1.40 and 18.34±1.43 pg/ml, respectively) increased compared with the model group (14.54±1.61; P<0.05). In addition, the levels of IL-6 decreased in the BSHY-L, BSHY-M and BSHY-H groups (91.85±14.81, 82.99±15.65 and 80.54±14.61 pg/ml, respectively) compared with the model group (105.93±16.50 pg/ml; P<0.05). Furthermore, it was demonstrated that BSHY increased the bone density in the BSHY-L, BSHY-M and BSHY-H groups (0.20±0.014, 0.22±0.016 and 0.22±0.017 g/cm2, respectively) compared with the model group (0.19±0.011 g/cm2; P<0.05). BSHY was also found to increase the number of osteoblasts in the BSHY-L, BSHY-M and BSHY-H groups (25.38±2.17, 29.25±2.12 and 30.00±2.39, respectively), compared with in the model group (14.75±2.38; P<0.05), and decrease the number of osteoclasts in the BSHY-L, BSHY-M and BSHY-H groups (4.00±1.85, 4.25±1.39 and 5.75±1.49, respectively) compared with 9.50±1.60 observed in the model group (P<0.05). These results suggest that BSHY is a potential therapeutic drug for the treatment of osteoporosis in vivo. Furthermore, these results suggest that the mechanism by which BSHY decreases the serum levels of IL-6 may be by regulating E2.published_or_final_versio

    Void-free 3D bioprinting for in-situ endothelialization and microfluidic perfusion

    Get PDF
    Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. We address both of these issues by introducinga versatile3D bioprinting strategy, in which a templating bioink is deposited layer-by-layer alongside a matrix bioink to establish void-free multimaterial structures. After crosslinking the matrix phase, the templating phase issacrificedto create a well-defined 3D network of interconnected tubular channels. This void-free 3D printing (VF-3DP) approachcircumvents the traditional concerns of structural collapse, deformation and oxygen inhibition, moreover, it can be readily used to printmaterials that are widely considered “unprintable”. By pre-loading endothelial cells into the templating bioink, the inner surface of the channels can be efficiently cellularized with a confluent endothelial layer. This in-situ endothelializationmethod can be used to produce endothelium with a far greater uniformity than can be achieved using the conventional post-seeding approach. This VF-3DP approach canalsobe extended beyond tissue fabrication and towards customized hydrogel-based microfluidics and self-supported perfusable hydrogel constructs
    corecore