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Backaction of a charge detector on a double quantum dot
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We develop a master equation approach to study the backaction of quantum-point contact (QPC) on a double
quantum dot (DQD) at zero bias voltage. We reveal why electrons can pass through the zero-bias DQD only
when the bias voltage across the QPC exceeds a threshold value determined by the eigenstate energy difference
in the DQD. This derived excitation condition agrees well with experiments on QPC-induced inelastic electron
tunneling through a DQD [S. Gustavsson ef al., Phys. Rev. Lett. 99, 206804 (2007)]. Moreover, we propose a

scheme to generate a pure spin current by the QPC in the absence of a charge current.
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I. INTRODUCTION

Recent technological advances have made it possible to
confine, manipulate, and measure a small number of elec-
trons or just one electron in a single or double quantum dot
(DQD).'~* In most experiments, the electron occupancy in a
quantum dot is usually measured by a local quantum-point-
contact (QPC) charge detector.>® In such a system, the back-
action of the charge detector to the DQD is of particular
interest.

Several previous theoretical works (see, e.g., Refs. 7-9),
involving this coupled DQD-QPC system, mainly focus on
the QPC-induced decoherence of the electronic states in the
DQD. Recently, the impacts of the backaction on the electron
transport through a zero-bias DQD were experimentally
investigated.'®!! It is suggested that the QPC emits photons
which can be absorbed by a nearby zero-bias DQD. The
photon-absorption process at the same time induces the in-
terdot electronic transitions inside the DQD and then
changes the DQD occupancy, which can be measured by the
QPC. These works show how strong the backaction of a
detector on a qubit is and provide an efficient solid-state
implementation for the detection of a single photon. More
importantly, the experiments show that these interdot transi-
tions can only be driven when the energy |eV,| (with e as the
charge unit and V, the bias voltage across the QPC) emitted
by the QPC exceeds the eigenenergy difference A of the
DQD, rather than the energy difference & of the local orbital
levels in the two dots [see Fig. 1(b)]. This means that, if
leV,/=A, the interdot transitions cannot be driven. Previ-
ously suggested mechanisms based on current fluctuations
through the QPC for interpreting the inelastic transition in
Ref. 10 involve a perturbative approximation!®!%!13 which is
valid for a weak interdot coupling. An alternative
mechanism!>!* considering the QPC as an effective bosonic
bath of the DQD was also proposed to describe the underly-
ing physics. However, how this effective bosonic bath is re-
lated to the QPC is not explicitly demonstrated.

In this paper, we theoretically analyze the backaction of
the QPC on the DQD. Starting from a microscopic descrip-
tion of the whole system, we derive a master equation (ME)
based on the eigenstate basis of the DQD to describe the
quantum dynamics of the DQD. Similar eigenstate-basis ME
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was used by Stace and Barret!® to study the QPC-induced
decoherence properties of the DQD. We show that this ME
approach provides a satisfactory theoretical understanding of
the backaction of the QPC on the DQD. In particular, experi-
mental observations of the inelastic electron tunneling
through a zero-bias DQD driven by a nearby QPC (Refs. 10
and 11) can be well explained. Moreover, we propose an
approach for generating a pure spin current through a DQD.
Interestingly, this spin current is driven by the nearby QPC
and can occur without a charge current.

This paper is organized as follows. In Sec. II, we model
the coupled DQD-QPC system and derive a master equation
to describe the quantum dynamics of the DQD in the pres-
ence of the charge detector. As shown in Sec. III, this master
equation naturally yields the main condition under which the
electron in the DQD can be excited by the QPC. In Sec. IV,
we show that the current through the DQD can be induced by
this QPC even when the DQD is at zero-bias voltage. Spe-

Lore

DQD QPC

FIG. 1. (Color online) (a) Schematic of a DQD connected to two
electrodes via tunneling barriers. A QPC used for measuring the
electron states yields backaction on the DQD. (b) QPC-driven in-
terdot electronic transition between two DQD eigenstates with an
energy difference A. The energy detuning & between the two single-
dot levels (dashed lines) can be varied by tuning the gate voltages.
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cifically, this QPC-induced current is proportional to the ca-
pacitive coupling strength between the DQD and the QPC. In
Sec. V, based on the same excitation mechanism by a nearby
QPC, we propose a scheme to generate a pure spin current
through a zero-bias DQD. Finally, we conclude in Sec. VI.

II. CHARACTERIZATION OF A DQD COUPLED
TO A QPC

For a DQD, both intradot and interdot Coulomb repul-
sions play an important role in the Coulomb-blockade effect
(see, e.g., Ref. 16). Here we consider the regime with strong
intradot and interdot Coulomb interactions so that only one
electron is allowed in the DQD (see Fig. 1). The states of the
DQD are denoted by the occupation states [0), |1), and |2),
representing, respectively, an empty DQD, one electron in
the left dot, and one electron in the right dot. The total
Hamiltonian of the system is given by

Ho = Hpgp + Hope + Hger + Hicads + Hr, (1)

where (we set i=1)

e

HDQD: E(TZ-*_QO-X’ (23)

Hgpe= 2 ogchics + OpyChaCna- (2b)
kq

Hyo = E (T- Xlaial - Xzaiaz)(CI%ch +H.c.), (2¢)
kq

— il ¥
Hleads - 2 WiCCis + W, sC . Crgs (Zd)

s

HT = 2 (lec;sal + QVSY%CT a, + HC) . (26)

r-rs
s

Here Hpqp, Hgpe, and Hig,q, are the free Hamiltonians of the
DQD, the QPC, and the electrodes connected to the DQD,
respectively. In Eq. (2a), € is the energy detuning between
the two dots and () is the interdot coupling. cgl(cp;) is the
annihilation operator for electrons in the source (drain) of the
QPC with momentum k while ¢, is the annihilation operator
for electrons in the ath (aw=[,r) electrode. Moreover, o,
=aba,—dla, and o,=aja,+aja, are Pauli matrices, with
a(a,) as the annihilation operator for electrons staying at the
left (right) dot. Hy., describes the electrostatic DQD-QPC
coupling, in which T is the tunneling amplitude of an isolated
QPC and y,(x,) gives the variation in the tunneling ampli-
tude when the extra electron stays at the left (right) dot.
Usually one has y; <y, since the QPC is located more
closely to the right dot. Furthermore, Hy gives the tunneling
couplings of the DQD to the two electrodes and it depends
on the tunneling coupling strengths Q; and Q.. In Eq. (2¢),
we have also introduced the operators Y, and Y to count the
number of electrons that have tunneled into the right lead.!”
First, we diagonalize the Hamiltonian of the DQD as
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N | B>

A

Hpqop = 5(|€>(e| ~leXgh =0, 3)
where A=\g?+4)? is the energy splitting of the two eigen-
states of the DQD given by |g)=a|l)-B|2), and |e)=p|1)
+al2), with a=cos(6/2), B=sin(#/2), and tan H=2Q/e.
This eigenstate basis will be adopted in all the following
calculations. To describe the dynamics of the system, we
derive the ME starting from the von Neumann equation

pR(t) == i[Htot’ pR] (4)

with pg the density matrix of the whole system. In the inter-
action picture defined by the free Hamiltonian

Hy=Hpqp + Hgpc + Hicads (5)
the interaction Hamiltonian Hy=Hy.+Hry is given by
H(t) = A(D)Y (1) + Hr(t), (6)
where
3
Al) =2 Pye, (7a)
n=1
Y(1) =2 [chepge s re + Hee.], (7b)
kq

He(1) = 3, [c](aa,e™?2 + Ba,e™?)eiont

s

+Yicl (- Bage_iA’/2’ + aa,e"?)en' + He.].

r-rs

(7¢)
In Eq. (7a), we have defined
Py=-apPle)g|. Py=-aplg)el,
P3=T- (xileXe| + x2lg)(g]) + @ xao (8)

with x,=x;—x»- Also, we have chosen w;=—w,=—A and
w3=0. Integrating the von Neumann equation within the
Born-Markov approximation and tracing over the degrees of
freedom of the QPC and the two electrodes, one obtains!'®

p(t)=TrR<—i[H1(t),pR(0)]—f dt'{Hl(t),[Hl(t’),pR(t)]}>.
0
)

Following the experimental conditions, we consider a zero
bias across the DQD. We also set u;=ur=0 [see Fig. 1(b)]
although other values of u; and up satisfying A/2>pu,
>-A/2 give identical results. Substituting H;(z) shown in
Egs. (6) and (7) into Eq. (9), neglecting the fast-oscillating
terms (which are proportional to e**2"), and converting the
obtained equation into the Schrodinger picture, we obtain the
ME (Ref. 17)

p(t) = = il Hpqp, p(0]+ Lap(t) + L1p(t) + yD[ala,lp
(10)

with
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3
Lp(1) = 27858 2 AD[P1p(1)O(eV, + )

i=1

+ D[P 1p(1)O(= eV, — w)},

Lp(t) = FL‘XZD[QZ]P + I 8°Dla,]p
+ FR,BZD[al;Y,]p +Tr®Dla, Y ]p.  (11)

Here we have chosen T=0 K for simplicity because the tem-
peratures in the experiments are extremely low. The notation
D acting on any operator A is defined by

D[Alp=ApA’ - %(ATAp+ pATA). (12)
Also, I'jg) _ngL(R)Q,k( # 18 the rate for electron tunneling
through the left (right) barrler and O(x)=(x+x[)/2. g; (i=S5,
D, L, or R) denotes the density of states at the QPC source,
the QPC drain, the left DQD electrode, or the right DQD
electrode, which is assumed to be constant over the relevant
energy range. Furthermore, to allow for the couplings of the
DQD to other degrees of freedom, such as hyperfine interac-
tions and electron-phonon couplings, we phenomenologi-
cally include an additional relaxation term [the fourth term in
Eq. (10)] describing transitions from the excited state |e) to
the ground state |g).

III. QPC-INDUCED EXCITATION CONDITION

Below we use the ME to derive the electron tunneling
rates into and out of the DQD at zero bias voltage. From Egs.
(10) and (11) and the relations

YT, pln)=p™,  (n|Y,Ypln)=p",

(n[YIpY,Iny=p" ™D, (Y pY]In)=p" " (13)

we obtain the n-resolved equation of motion for each re-
duced density-matrix element

. 1
oo == Tl + LB + Tralol”",

pee =Lralply + LeBply " = Lapgy + (o i,

pl=—T,p + T, — (T, + »)pl, (14)

where n is the number of electrons that have tunneled
through the DQD via the right tunneling barrier at time ¢ so
that p;;= ,,plj) (i,j=0,g,e). In Eq. (14), we have defined the
QPC-induced excitation and relaxation rates

r,.= 277888DX§(CV,3)2[®(6V4 FA)+0O(-eV,FA)]
(15)

as well as the tunneling rates I'y=I;a?+Iz8> and I,
ZFLBZ+FRC¥2.

The environment-induced relaxation rate> y(~1 ns) of a
DQD is typically much larger than the available measure-
ment bandwidth of the QPC so that transitions between the
ground state |g) and the excited state |e) cannot be directly
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registered by the detector. However, using time-resolved
charge-detection techniques, one can measure whether the
DQD is occupied by an extra electron or not so that the
measured time traces show two levels.'® From these traces,
one can extract the rates of electrons tunneling into and out
of the DQD, i.e., I',,=1/{7,) and Iy, =1/{7,,) with 7, and
Tou Deing the waiting times for the corresponding tunneling
events. At steady state with p;(t—)=0, the number of
electrons coming from the left lead to the DQD should be
equal to the number of electrons going out of the DQD to the
right lead. Thus, one has the equilibrium relation

Tinpoo = Fout(pgg + Pee) - (16)

equation in Eq. (14) implies that I';,=I";. Using also the
steady-state solution of Eq. (14), straightforward algebra
gives

FaFZ

_— 17
L+, +y (17)

out =

As expected, the rate for electrons tunneling out of the DQD
is proportional to the QPC-induced excitation rate I',. Using
I', obtained above, it follows from Eq. (17) that
2mg5gpXa(@B) To[O(eV,y = A) + O(= eV, = A)]
[+, +y ’

out =

(18)

We emphasize that this excitation process occurs (i.e., 'y
>0) only when the energy emitted by the QPC is larger than
the eigenenergy difference of the DQD, i.e.,

leV, > A. (19)

Otherwise, if |eV,|=A, T, is always zero and no excitation
process happens. This agrees well with the experiment in
Ref. 10. More importantly, we note from Eq. (18) that

Tou = Xa= (X1 = x2)% (20)

which clearly implies that the QPC-induced excitation results
from the electrostatic coupling between the DQD and the
QPC. Figure 2(a) plots the rate I',, as a function of both the
QPC-bias voltage V,; and the energy detuning &;—¢&, of the
DQD. Figure 2(b) gives the calculated rates for electrons
tunneling into and out of the DQD as a function of the en-
ergy detuning. For almost symmetric tunneling couplings,
i.e., I'y =T, the rate I'}, is almost constant and I' ,; depends
strongly on the energy detuning.

IV. QPC-DRIVEN CHARGE CURRENT
THROUGH THE DQD

Without a nearby QPC, an electron can enter the empty
zero-bias DQD but should be trapped by the DQD. This
leads to zero current through the DQD. However, the QPC
can induce an excitation from the ground state |g) to the
excited state |e) [Fig. 1(b)], from which the electron leaves
the DQD. When this cycle repeats, a finite current flows
through the DQD. Below we study this QPC-induced charge
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FIG. 2. (Color online) (a) Tunneling rate T'y, as a function of
both the energy detuning &, —¢, and the QPC bias voltage V,;. The
hyperbolic curves mark the two eigenenergy levels of the DQD. (b)
Tunneling rates I';, and ' versus the energy detuning. We use the
typical experimental parameters in Ref. 10: V,;=-300 ueV, Q
=32 weV, I'}=1.2 kHz, I'p=1.1 kHz, T=0.5, x;=0.028 7, x»
=0.05 T, and 1/y=2 ns.

current when the couplings between the DQD and the two
electrodes are strongly asymmetric, i.e., I'; > 1k, as investi-
gated by Gasser et al.'' The charge current /,(f) through the
DQD at time ¢ is

dN(t
1.(1) = e% =e>, npl”, (21)

where N(¢) is the number of electrons that have tunneled into
the right lead. From Eq. (14), we get

[c(t) = eFR(azpee - IBZPOO) . (22)
At steady state, the current becomes

I,T. (o - B>
I= el' gl (a” = j3°) . (23)
LT +Tp)+ (T, +y+T,)

In Gasser et al.’s experiment, the DQD 1is coupled to two
QPCs, i.e., one QPC is adjacent to the left dot and the other
to the right dot. This can be characterized by replacing Hgpc
and Hg in Egs. (2b) and (2¢) by

_ i _ T T
Hape = > H QpPC = > OgCliCsii+ ©pgiCpgiCDgi>
i kqi
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FIG. 3. (Color online) QPC-driven static charge current I,
through the DQD as a function of the energy detuning for different
QPC voltages. (a) V, €[0,1000] peV, V4;»=0, and xz=xiL
_X2L=0'022 T] and (b) deEl:O,IOOO] ;LeV, Vd1=07 and Xd2
=X1r—X2r=—0.029 T,. Other parameters are [';=0.5 GHz, 'y
=7.8 MHz, 0=35 ueV, T)=T7,=0.5, and 1/y=5 ns.

Hyo= 2 (T = x1aja, - Xai052) (CGyicpgi+ He.). (24)
kqi

Here Hé)Pc is the Hamiltonian of the ith (i=L,R) QPC and
X1i(x2;) gives the variation in the tunneling amplitude of the
ith QPC when the extra electron stays in the left (right) dot.
From Eq. (23), one notes that the charge current is deter-
mined by )(in, which characterizes the coupling strength be-
tween the DQD and the QPC.

In Fig. 3, we plot the charge current versus energy detun-
ing for various QPC voltages. Here we choose the current
direction from the left to the right to be positive. Comparing
Fig. 3(a) with Fig. 3(b), one sees that the current is more
pronounced for a larger value of 3. This is because the
QPC-induced excitation becomes stronger when XL21 is larger.
Furthermore, the asymmetry of the current with respect to
the energy detuning &;—&, can be explained as follows.
When &, >¢,, one has o< and electrons tunnel from the
right electrode to the left one via the DQD. In contrast, elec-
trons tunnel in the opposite direction when &;<<eg,. In the
latter case, however, a small tunneling rate ', will partially
block the current, which leads to the asymmetry of the
current. These features were clearly observed in the
experiment.!!

V. NOVEL SPIN-CURRENT GENERATOR

Finally, we propose a scheme to generate a pure spin cur-
rent through the DQD by applying two different static mag-
netic fields in the quantum dots. Unequal magnetic fields in
the two dots can be realized by placing a Co micromagnet
near one dot of the DQD.!” When the eigenstate energy dif-
ference A becomes spin dependent, the QPC-driven excita-
tion rate depends on the spin states. A spin-polarized current
through the DQD can be generated. Here we consider the
case with a static magnetic field B, applied only at the left
dot. Generalizing the ME in Eq. (14) to take into account the
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FIG. 4. (Color online) QPC-induced charge (/,=1,+1) and spin
(I,;=1,-1)) currents through a DQD when a static magnetic field is
applied at the left dot. Here I';=1"3=7.5 MHz and the Zeeman
splitting is A_=20 ueV. The other parameters are the same as those
in Fig. 3(a). Inset: schematic of the energy levels in the DQD at
€1=6.

spin degrees of freedom, the current due to electrons with
spin o (=1,]) is given by

s el TRTTS (o - B2)

- M, , (25)
where
M, =TToT9TS + TS + T9T9)
+ 2 TS5+ TS+ ). (26)

s=0,0

All the spin-related parameters in Eq. (25), e.g., tan 6,
=2Q0/e, and 'Y= FLa(2,+FRB(2}_, are calculated by simply re-
placing € in the original expression by

; (27)

where A_=gugB. is the Zeeman splitting with g being the g
factor and wp the magneton.

In Fig. 4, the charge current (I.=1;+1|) and the spin cur-
rent (I;=1,—1I)) are plotted versus the energy detuning &,
—&, when I';=T';. At zero detuning with ¢,=¢,, the charge
current is zero and the spin current reaches its maximum.
This is because electrons with opposite spins are transported
with the same effective rate but in opposite directions. There-
fore, a pure spin current without a charge current can be
driven by a QPC in this proposed device. A charge current is
also induced at nonvanishing detuning (|&|>0) but its direc-
tion is sensitive to the sign of e. Specifically, the charge
current is positive when &, > g, and negative vice versa. The
underlying mechanism can be demonstrated as follows.

PHYSICAL REVIEW B 81, 075301 (2010)

When the energy detuning is deviated from the zero detuning
point, e.g., &, > &,, the absolute value of the spin-up current
transporting from the left to the right decreases while that of
the spin-down current transporting from the right to the left
increases. This results in a positive charge current tunneling
through the DQD. In contrast to other schemes, including
electron spin resonance® or photon-assisted tunneling?!' in
QDs, our proposal does not require a fast and strong oscil-
lating magnetic field. Moreover, unlike the partially polar-
ized spin current through a QD driven by a spin bias*? or
spin-orbit interaction,?® a pure spin current without a charge
current can be generated here and the amplitude is tunable
via the voltage across the QPC.

In quantum-transport experiments, the most well-
established readout devices are charge detectors. However,
these charge-sensitive devices are insensitive to spins. Be-
cause of the unique properties of the spin current in our
proposed setup, charge detectors can be used to indirectly
reveal the existence of the spin current. As shown in Fig. 4,
the spin current is symmetric about the energy detuning &,
— &, but the charge current has an asymmetric dependence. If
the measured charge current is demonstrated to be asymmet-
ric about &, as predicted in Fig. 4, it serves as a characteristic
feature indicating that a pure spin current occurs at the zero
detuning point in our present proposal.

VI. DISCUSSION AND CONCLUSION

In our approach, the current through the zero-bias DQD is
due to the backaction of the QPC. This mechanism predicts
that the rate for electrons tunneling out of the zero-bias DQD
is proportional to the bias voltage applied across the QPC
[see Eq. (18)]. However, in Ref. 11, where the DQD is as-
sumed to be coupled to acoustic phonons [see Eq. (A4) in
Ref. 11], this tunneling rate has a polynomial relation with
the bias voltage across the QPC. We suggest that, using the
setup fabricated in Ref. 11, one can measure the rate for
electrons tunneling out of the DQD as a function of the bias
voltage across the QPC to distinguish between these two
mechanisms.

In conclusion, we have developed a ME approach to study
the backaction of a charge detector (QPC) on a DQD. We
show that an electron in the DQD can be excited from its
ground state to the excited state when the energy emitted by
the QPC exceeds the eigenenergy difference. This agrees
well with the observations in two recent experiments.'®!!
Moreover, we propose a scheme to drive a pure spin current
by a QPC in the absence of a charge current.
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