9 research outputs found

    Sensing of inspiration events from speech:comparison of deep learning and linguistic methods

    Get PDF
    Respiratory chest belt sensor can be used to measure the respiratory rate and other respiratory health parameters. Virtual Respiratory Belt, VRB, algorithms estimate the belt sensor waveform from speech audio. In this paper we compare the detection of inspiration events (IE) from respiratory belt sensor data using a novel neural VRB algorithm and the detections based on time-aligned linguistic content. The results show the superiority of the VRB method over word pause detection or grammatical content segmentation. The comparison of the methods show that both read and spontaneous speech content has a significant amount of ungrammatical breathing, that is, breathing events that are not aligned with grammatically appropriate places in language. This study gives new insights into the development of VRB methods and adds to the general understanding of speech breathing behavior. Moreover, a new VRB method, VRBOLA, for the reconstruction of the continuous breathing waveform is demonstrated

    Sensing of inspiration events from speech:comparison of deep learning and linguistic methods

    Get PDF
    Respiratory chest belt sensor can be used to measure the respiratory rate and other respiratory health parameters. Virtual Respiratory Belt, VRB, algorithms estimate the belt sensor waveform from speech audio. In this paper we compare the detection of inspiration events (IE) from respiratory belt sensor data using a novel neural VRB algorithm and the detections based on time-aligned linguistic content. The results show the superiority of the VRB method over word pause detection or grammatical content segmentation. The comparison of the methods show that both read and spontaneous speech content has a significant amount of ungrammatical breathing, that is, breathing events that are not aligned with grammatically appropriate places in language. This study gives new insights into the development of VRB methods and adds to the general understanding of speech breathing behavior. Moreover, a new VRB method, VRBOLA, for the reconstruction of the continuous breathing waveform is demonstrated

    System and method for analysis of the upper airway and a respiratory pressure support system

    No full text
    A system for analysis of the upper airway has at least two sensors are provided along a flow path leading to the mouth and/or nose of a user. A relation is derived between the two sensor signals, and this is interpreted to detect at least the presence of upper airway obstructions, and preferably also the location and/or extent of such obstructions

    Recurrent neural network for classification of snoring and non-snoring sound events

    No full text
    Obstructive sleep apnea (OSA) is a disorder that affects up to 38% of the western population. It is characterized by repetitive episodes of partial or complete collapse of the upper airway during sleep. These episodes are almost always accompanied by loud snoring. Questionnaires such as STOP-BANG exploit snoring to screen for OSA. However, they are not quantitative and thus do not exploit its full potential. A method for automatic detection of snoring in whole-night recordings is required to enable its quantitative evaluation. In this study, we propose such a method. The centerpiece of the proposed method is a recurrent neural network for modeling of sequential data with variable length. Mel-frequency cepstral coefficients, which were extracted from snoring and non-snoring sound events, were used as inputs to the proposed network. A total of 20 subjects referred to clinical sleep recording were also recorded by a microphone that was placed 70 cm from the top end of the bed. These recordings were used to assess the performance of the proposed method. When it comes to the detection of snoring events, our results show that the proposed method has an accuracy of 95%, sensitivity of 92%, and specificity of 98%. In conclusion, our results suggest that the proposed method may improve the process of snoring detection and with that the process of OSA screening. Follow-up clinical studies are required to confirm this potential

    Recurrent neural network for classification of snoring and non-snoring sound events

    No full text
    \u3cp\u3eObstructive sleep apnea (OSA) is a disorder that affects up to 38% of the western population. It is characterized by repetitive episodes of partial or complete collapse of the upper airway during sleep. These episodes are almost always accompanied by loud snoring. Questionnaires such as STOP-BANG exploit snoring to screen for OSA. However, they are not quantitative and thus do not exploit its full potential. A method for automatic detection of snoring in whole-night recordings is required to enable its quantitative evaluation. In this study, we propose such a method. The centerpiece of the proposed method is a recurrent neural network for modeling of sequential data with variable length. Mel-frequency cepstral coefficients, which were extracted from snoring and non-snoring sound events, were used as inputs to the proposed network. A total of 20 subjects referred to clinical sleep recording were also recorded by a microphone that was placed 70 cm from the top end of the bed. These recordings were used to assess the performance of the proposed method. When it comes to the detection of snoring events, our results show that the proposed method has an accuracy of 95%, sensitivity of 92%, and specificity of 98%. In conclusion, our results suggest that the proposed method may improve the process of snoring detection and with that the process of OSA screening. Follow-up clinical studies are required to confirm this potential.\u3c/p\u3
    corecore