13 research outputs found
Morphometric effects of MAM E17 treatment on brain structures.
<p>(A) Brain diagrams reproduced with permission from The Rat Brain Atlas by Paxinos and Watson 6 edition illustrating how anatomical areas were delineated. Bregma −3.8mm on left and Bregma −5.8mm on right. Areas and thicknesses were measured as delineated in the pictures. (B–C) Graphs indicating differences in brain area (B) and circumference (C) between control (white bars) and MAM-exposed animals (black bars). (D–E) Graphs indicating area differences between MAM and control animals at Bregma −3.6 (D) and −5.8mm (E). (F–G) Graphs indicating differences in thickness between MAM and control animals at Bregma −3.6 (F) and −5.8mm (G). Results represent the mean ± S.E.M. of 9 animals per group from which slides done by duplicate were analyzed. Amygdala (AMG), associative parietal cortex (PtA), cornu ammonis (CA), dentate gyrus (DG), entorhinal cortex (ERC), hippocampus (HIP), mediodorsal thalamic nucleus (MDT), perirhinal cortex (PER), piriform cortex (PIR), somato-sensory cortex barrel field 1 (S1BF), substantia nigra (SN), thalamus (THAL), ventral tegmental area (VTA). *p<0.05 **p<0.01 and ***p<0.001.</p
Discontinuities and heterotopias in MAM and control animals.
<p>(A) Coronal slices at Bregma −3.8mm of the hippocampus, CA1, CA2 and CA3 from MAM exposed rats stained with anti-NeuN antibody and 3,3′-diaminobenzidine as chromogen. The rectangles in the first photo indicate where the magnification shown in the three following photos comes from. Arrows point to actual discontinuities. (B) Graph bars indicating discontinuity differences between MAM rats and control animals in hippocampal subfields CA1, CA2 and CA3. (C) Coronal slices at Bregma −3.8mm from MAM and control animals stained with anti-NeuN antibody and 3,3′-diaminobenzidine as chromogen. The rectangles within the two left photos indicate where the magnification shown in the two right photos comes from. The arrow points to an actual heterotopia. (D) Graph indicating number of heterotopias in MAM rats' hippocampus compared to control animals. Results represent the mean ± S.E.M. of 9 animals per group from which slides done by duplicate were analyzed. *p<0.05 and ***p<0.001.</p
Neuronal size and density in the hippocampal formation of MAM-treated rats and patients with schizophrenia.
1<p>Methylazoxymethanol during embryonic day 17.</p>2<p>Cornu ammonis.</p>3<p>Two dimensional.</p>4<p>Three dimensional.</p
Ventricular size in MAM and control animals.
<p>(Top left) Coronal section from a representative MAM rat at Bregma −3.8mm stained with anti-GFAP antibodies and 3,3′-diaminobenzidine used as chromogen. An enlarged ventricle could be observed in the picture. (Top center and top right) Three magnifications (10×, 2× and 2×) are shown to evidence tanycytes, which are circled in the last magnification. (Bottom) Graph indicating differences in ventricular size between MAM (black bars) and control animals (white bars). Results represent the mean ± S.E.M. of 9 animals per group from which slides done by duplicate were analyzed.</p
Neuronal density and neuronal soma size in MAM and control animals.
<p>(A) Coronal section at Bregma −3.8mm stained with anti-NeuN antibody and 3,3′-diaminobenzidine as chromogen indicating how hippocampal subfields were delineated. (B) Graph indicating changes in neuronal densities from MDT, VPM, VPL, S1BF, PER and ERC between MAM (black bars) and control animals (white bars). (C) Graph indicating changes in neuronal densities between MAM and control animals from hippocampal subfields CA1, CA2, CA3, CA4 and DG. (D) Graph indicating changes in neuronal soma size from MDT, VPM, VPL, S1BF, PER and ERC between MAM and control animals. (E) Graph indicating differences between MAM and control animals' cross-sectional area of neuronal somas from CA1, CA2, CA3, CA4 and DG. Results represent the mean ± S.E.M. of 9 animals per group from which slides done by duplicate were analyzed. In graphs D and E individual values are the mean of at least 500 measured neurons for each cerebral structure or hippocampal layer *p<0.05 and **p<0.01.</p
Neuronal organization of entorhinal cortex in MAM and control rats.
<p>Coronal sections of the entorhinal cortex at Bregma −3.8mm from control animals stained with Bodian-Luxol (A) and NeuN immunostaining (B). (C) Bodian-Luxol staining of the entorhinal cortex from control animals. A well defined columnar organization and myelin with parallel directions can be observed. Arrows point to myelin pathways. (D) Anti-NeuN immunostaining of the entorhinal cortex from control animals showing axon hillocks with a parallel orientation and neuronal bodies regularly organized. (E) Neuronal somas and axon hillocks are clearly distinguished in this picture magnified 400×. Arrows point to axon-hillock direction. (F) Bodian-Luxol staining of the entorhinal cortex from MAM rats reveals a less obvious columnar organization while myelin direction appears random. (G) NeuN immunostaining of the entorhinal cortex from MAM animals. Neuronal disorganization with clusters of neurons is evident mainly in layers II and III. Circles highlight neuronal clusters. (H) Neuronal disorganization, neuronal size variability and axon hillocks with random directions can be observed in this picture magnified 400×. Arrows point to axon-hillock direction.</p
Reelin-containing cells, reelin expression and methylation in the hippocampus of MAM and control animals.
<p>(A) Coronal slices from MAM and control animals at Bregma −3.8mm stained with anti-reelin antibodies and 3,3′-diaminobenzidine used as chromogen. (B) Graph indicating differences in reelin positive cells between MAM (black bar) and control animals (white bar). Results represent the mean ± S.E.M. of 9 animals per group from which slides done by duplicate were analyzed. (C) Graph bars indicating methylation differences between MAM and control animals in five CpGs (−782, −772, −768, −754, and −750) from the reelin promoter within the hippocampus. Methylation levels are expressed in percentage for Sham and MAM groups by each measured CpG site. (D) Graph bars indicating differences in reelin mRNA expression from MAM and control rats' hippocampus. Reelin mRNA expression levels were plotted as delta CT values.</p
Neuronal size and density in the mediodorsal thalamus of MAM-treated rats and patients with schizophrenia.
1<p>Methylazoxymethanol during embryonic day 17.</p>2<p>Mediodorsal thalamus.</p>3<p>Two dimensional.</p>4<p>Three dimensional.</p
Neuronal size and density in the entorhinal cortex of MAM-treated rats and patients with schizophrenia.
1<p>Methylazoxymethanol during embryonic day 17.</p>2<p>Entorhinal cortex.</p>3<p>Two dimensional.</p><p>*All other studies were quantitative.</p