863 research outputs found

    Time reversal constraint limits unidirectional photon emission in slow-light photonic crystals

    Get PDF
    Photonic crystal waveguides are known to support C-points - point-like polarisation singularities with local chirality. Such points can couple with dipole-like emitters to produce highly directional emission, from which spin-photon entanglers can be built. Much is made of the promise of using slow-light modes to enhance this light-matter coupling. Here we explore the transition from travelling to standing waves for two different photonic crystal waveguide designs. We find that time-reversal symmetry and the reciprocal nature of light places constraints on using C-points in the slow-light regime. We observe two distinctly different mechanisms through which this condition is satisfied in the two waveguides. In the waveguide designs we consider, a modest group-velocity of vgc/10v_g \approx c/10 is found to be the optimum for slow-light coupling to the C-points.Comment: 16 pages, 4 figure

    Room temperature plasmon laser by total internal reflection

    Full text link
    Plasmon lasers create and sustain intense and coherent optical fields below light's diffraction limit with the unique ability to drastically enhance light-matter interactions bringing fundamentally new capabilities to bio-sensing, data storage, photolithography and optical communications. However, these important applications require room temperature operation, which remains a major hurdle. Here, we report a room temperature semiconductor plasmon laser with both strong cavity feedback and optical confinement to 1/20th of the wavelength. The strong feedback arises from total internal reflection of surface plasmons, while the confinement enhances the spontaneous emission rate by up to 20 times.Comment: 8 Page, 2 Figure

    Optical control of spin coherence in singly charged (In,Ga)As/GaAs quantum dots

    Full text link
    Electron spin coherence has been generated optically in n-type modulation doped (In,Ga)As/GaAs quantum dots (QDs) which contain on average a single electron per dot. The coherence arises from resonant excitation of the QDs by circularly-polarized laser pulses, creating a coherent superposition of an electron and a trion state. Time dependent Faraday rotation is used to probe the spin precession of the optically oriented electrons about a transverse magnetic field. Spin coherence generation can be controlled by pulse intensity, being most efficient for (2n+1)pi-pulses.Comment: 5 pages, 4 figure

    Tailored quantum dots for entangled photon pair creation

    Full text link
    We compare the asymmetry-induced exchange splitting delta_1 of the bright-exciton ground-state doublet in self-assembled (In,Ga)As/GaAs quantum dots, determined by Faraday rotation, with its homogeneous linewidth gamma, obtained from the radiative decay in time-resolved photoluminescence. Post-growth thermal annealing of the dot structures leads to a considerable increase of the homogeneous linewidth, while a strong reduction of the exchange splitting is simultaneously observed. The annealing can be tailored such that delta_1 and gamma become comparable, whereupon the carriers are still well confined. This opens the possibility to observe polarization entangled photon pairs through the biexciton decay cascade.Comment: 4 pages, 4 figure

    Stability of polarization singularities in disordered photonic crystal waveguides

    Get PDF
    The effects of short-range disorder on the polarization characteristics of light in photonic crystal waveguides were investigated using finite-difference time-domain simulations with a view to investigating the stability of polarization singularities. It was found that points of local circular polarization (C points) and contours of linear polarization (L lines) continued to appear even in the presence of high levels of disorder, and that they remained close to their positions in the ordered crystal. These results are a promising indication that devices exploiting polarization in these structures are viable given current fabrication standards

    Boundary restriction for negative emotional images is an example of memory amplification

    Get PDF
    We investigated whether boundary restriction—misremembering proximity to traumatic stimuli—is a form of memory amplification and whether re-experiencing trauma plays a role in boundary restriction errors. In four experiments, subjects viewed a series of traumatic photographs. Later, subjects identified the photographs they originally saw among distracters that could be identical, close-up, or wide-angled versions of the same photographs. Subjects also completed measures of mood, analogue PTSD symptoms, phenomenological experience of intrusions, and processing style. Across experiments, subjects were more likely to incorrectly remember the photographs as having extended boundaries: boundary extension. Despite this tendency, the extent to which subjects re-experienced traumatic aspects of the photographs predicted how often they incorrectly remembered the photographs as having narrower boundaries: boundary restriction. Our data suggest that although boundary extension is more common, boundary restriction is related to individual differences in coping mechanisms post-trauma. These results have theoretical implications for understanding how people remember trauma.Australian Research Council ARC DP14010266

    Anomalous Stark Shifts in Single Vertically Coupled Pairs of InGaAs Quantum Dots

    Full text link
    Vertically coupled Stranski Krastanow QDs are predicted to exhibit strong tunnelling interactions that lead to the formation of hybridised states. We report the results of investigations into single pairs of coupled QDs in the presence of an electric field that is able to bring individual carrier levels into resonance and to investigate the Stark shift properties of the excitons present. Pronounced changes in the Stark shift behaviour of exciton features are identified and attributed to the significant redistribution of the carrier wavefunctions as resonance between two QDs is achieved. At low electric fields coherent tunnelling between the two QD ground states is identified from the change in sign of the permanent dipole moment and dramatic increase of the electron polarisability, and at higher electric fields a distortion of the Stark shift is attributed to a coherent tunnelling effect between the ground state of the upper QD and the excited state of the lower QD.Comment: Conference paper for QD2004 3 figure

    Conditional phase shift from a quantum dot in a pillar microcavity

    Full text link
    Large conditional phase shifts from coupled atom-cavity systems are a key requirement for building a spin photon interface. This in turn would allow the realisation of hybrid quantum information schemes using spin and photonic qubits. Here we perform high resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show both the change in reflectivity as the quantum dot is tuned through the cavity resonance, and measure the conditional phase shift induced by the quantum dot using an ultra stable interferometer. These techniques could be extended to the study of charged quantum dots, where it would be possible to realise a spin photon interface
    corecore