29 research outputs found

    Testing the Tropical Trigger Hypothesis of Abrupt Climate Variability

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordDansgaard-Oeschger oscillations (DOs) are abrupt shifts in climate, which are dramatic temperature fluctuations observed in Greenland and recorded globally. These abrupt changes are associated with the slowing and shutting down of the Atlantic Meridional Overturning Circulation (AMOC), but despite their importance the driving forces of DOs are not fully understood. Here we assess the role of the AMOC during DOs, the Northern vs Southern Hemisphere control on AMOC, and the possibility of neotropical moisture as a driver for abrupt climate variability. During DOs, South America has recorded a disparity between the degree of warming, and the change in precipitation at different sites. Based on our current understanding, we propose likely oceanic and continental changes in tropical South America that can help disentangle the triggers of these events. With the margins of error associated with dating sources of palaeo-data, the need for an independent chronology with multiple proxies recorded in the same record, could offer the information needed to understand the driving forces of DOs.Natural Environment Research Council (NERC)PAGESINQU

    From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection

    Get PDF
    The objective of this paper is to present the results of discussions at a workshop held as part of the International Congress of Radiation Research (Environmental Health stream) in Manchester UK, 2019. The main objective of the workshop was to provide a platform for radioecologists to engage with radiobiologists to address major questions around developing an Ecosystem approach in radioecology and radiation protection of the environment. The aim was to establish a critical framework to guide research that would permit integration of a pan-ecosystem approach into radiation protection guidelines and regulation for the environment. The conclusions were that the interaction between radioecologists and radiobiologists is useful in particular in addressing field versus laboratory issues where there are issues and challenges in designing good field experiments and a need to cross validate field data against laboratory data and vice versa. Other main conclusions were that there is a need to appreciate wider issues in ecology to design good approaches for an ecosystems approach in radioecology and that with the capture of 'Big Data', novel tools such as machine learning can now be applied to help with the complex issues involved in developing an ecosystem approach
    corecore