109 research outputs found

    Evolution of geometric structures in intense turbulence

    Full text link
    We report measurements of the evolution of lines, planes, and volumes in an intensely turbulent laboratory flow using high-speed particle tracking. We find that the classical characteristic time scale of an eddy at the initial scale of the object considered is the natural time scale for the subsequent evolution. The initial separation may only be neglected if this time scale is much smaller than the largest turbulence time scale, implying extremely high turbulence levels.Comment: 10 pages, 6 figures, added more detail

    Time-Frequency Analysis Reveals Pairwise Interactions in Insect Swarms

    Full text link
    The macroscopic emergent behavior of social animal groups is a classic example of dynamical self-organization, and is thought to arise from the local interactions between individuals. Determining these interactions from empirical data sets of real animal groups, however, is challenging. Using multicamera imaging and tracking, we studied the motion of individual flying midges in laboratory mating swarms. By performing a time-frequency analysis of the midge trajectories, we show that the midge behavior can be segmented into two distinct modes: one that is independent and composed of low-frequency maneuvers, and one that consists of higher-frequency nearly harmonic oscillations conducted in synchrony with another midge. We characterize these pairwise interactions, and make a hypothesis as to their biological function

    Searching for Effective Forces in Laboratory Insect Swarms

    Full text link
    Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean free path of the insects also suggest that individuals are on average very weakly coupled, but that they are also tightly bound to the swarm itself. Our results therefore suggest that some attractive interaction maintains cohesion of the swarms, but that this interaction is not as simple as an attraction to nearest neighbours

    Curvature Fields, Topology, and the Dynamics of Spatiotemporal Chaos

    Get PDF
    The curvature field is measured from tracer particle trajectories in a two-dimensional fluid flow that exhibits spatiotemporal chaos, and is used to extract the hyperbolic and elliptic points of the flow. These special points are pinned to the forcing when the driving is weak, but wander over the domain and interact in pairs at stronger driving, changing the local topology of the flow. Their behavior reveals a two-stage transition to spatiotemporal chaos: a gradual loss of spatial and temporal order followed by an abrupt onset of topological changes.Comment: 5 pages, 5 figure

    Intrinsic Fluctuations and Driven Response of Insect Swarms

    Full text link
    Animals of all sizes form groups, as acting together can convey advantages over acting alone; thus, collective animal behavior has been identified as a promising template for designing engineered systems. However, models and observations have focused predominantly on characterizing the overall group morphology, and often focus on highly ordered groups such as bird flocks. We instead study a disorganized aggregation (an insect mating swarm), and compare its natural fluctuations with the group-level response to an external stimulus. We quantify the swarm’s frequency-dependent linear response and its spectrum of intrinsic fluctuations, and show that the ratio of these two quantities has a simple scaling with frequency. Our results provide a new way of comparing models of collective behavior with experimental data

    Emergent dynamics of laboratory insect swarms

    Get PDF
    Collective animal behaviour occurs at nearly every biological size scale, from single-celled organisms to the largest animals on earth. It has long been known that models with simple interaction rules can reproduce qualitative features of this complex behaviour. But determining whether these models accurately capture the biology requires data from real animals, which has historically been difficult to obtain. Here, we report three-dimensional, time-resolved measurements of the positions, velocities, and accelerations of individual insects in laboratory swarms of the midge Chironomus riparius. Even though the swarms do not show an overall polarisation, we find statistical evidence for local clusters of correlated motion. We also show that the swarms display an effective large-scale potential that keeps individuals bound together, and we characterize the shape of this potential. Our results provide quantitative data against which the emergent characteristics of animal aggregation models can be benchmarked.United States. Army Research Office (Grant W911Nf-12-1-0517

    Dynamic Topology in Spatiotemporal Chaos

    Get PDF
    By measuring the tracks of tracer particles in a quasi-two-dimensional spatiotemporally chaotic laboratory flow, we determine the instantaneous curvature along each trajectory and use it to construct the instantaneous curvature field. We show that this field can be used to extract the time-dependent hyperbolic and elliptic points of the flow. These important topological features are created and annihilated in pairs only above a critical Reynolds number that is largest for highly symmetric flows. We also study the statistics of curvature for different driving patterns and show that the curvature probability distribution is insensitive to the details of the flow
    • …
    corecore