12 research outputs found
Clinical Polymorphism of Stargardt Disease in a Large Consanguineous Tunisian Family; Implications for Nosology
Purpose: To describe the polymorphic expression of Stargardt disease in a large Tunisian family with clinical intra- and interfamilial variation of the condition.
Methods: Twelve subjects from two related families with autosomal recessive Stargardt disease were enrolled. A detailed clinical examination including visual acuity and visual field measurement, fundus photography, fluorescein angiography, electroretinography (ERG) and color vision testing was performed for all subjects.
Results: The youngest child from family A manifested typical Stargardt disease while her two brothers presented with Stargardt disease-fundus flavimaculatus (STGD-FFM) and her two sisters demonstrated a peculiar phenotype overlapping Stargardt disease and cone-rod dystrophy; their phenotypic manifestation corresponded well with ERG groups I, II and III, respectively. This uncommon occurrence of an age-related decline in ERG amplitude and worsening of fundus changes is suggestive of a grading pattern in Stargardt disease. Their two cousins in family B, displayed the STGD-FFM phenotype. Despite clinically similar STGD-FFM patterns in both families, age of onset and progression of the phenotype in family B differed from family A.
Conclusion: This is the first report on phenotypic variation of Stargardt disease in a large Tunisian family. Regarding phenotype and severity of visual symptoms, family A demonstrated Stargardt disease at various stages of progression. In addition, STGDFFM appeared to be an independent clinical entity in family B. These findings imply that further parameters are required to classify StargardtâČs disease
Genetic analysis of hereditary multiple exostoses in Tunisian families: a novel frame-shift mutation in the EXT1 gene
International audienceHereditary multiple exostoses (HME) is an autosomal dominant orthopaedic disorder most frequently caused by mutations in the EXT1 gene. The aim of the present study is to determine the underlying molecular defect of HME in two multigenerational Tunisian families with 21 affected members and to examine the degree of intrafamilial variability. Linkage analysis was performed using three microsatellite markers encompassing the EXT1 locus and mutation screening was carried out by direct sequencing. In family 1, evidence for linkage to EXT1 was obtained on the basis of a maximum LOD score of 4.26 at theta = 0.00 with D8S1694 marker. Sequencing of the EXT1 revealed a heterozygous G > T transversion (c.1019G > T) in exon 2, leading to a missense mutation at the codon 340 (p.Arg340Leu). In family 2 we identified a novel heterozygous 1 bp deletion in the exon 1 (c.529\â
31delA) leading to a premature codon stop and truncated EXT1 protein expression (p.Lys177LysfsX15). This mutation was associated with the evidence of an intrafamilial clinical variability and considered to be a novel disease-causing mutation in the EXT1 gene. These findings provide additional support for the involvement of EXT1 gene in the HME disease
Coexistence of mal de Meleda and congenital cataract in a consanguineous Tunisian family: two case reports
Abstract Introduction Mal de Meleda is a rare form of palmoplantar keratoderma, with autosomal recessive transmission. It is characterized by diffuse erythema and hyperkeratosis of the palms and soles. Recently, mutations in the ARS (component B) gene (ARS, MIM: 606119) on chromosome 8q24.3 have been identified in families with this disorder. Congenital cataract is a visual disease that may interfere with sharp imaging of the retina. Mutations in the heat-shock transcription factor 4 gene (HSF4; MIM: 602438) may result in both autosomal dominant and autosomal recessive congenital cataracts. Case presentation A Tunisian family with two female siblings aged 45 and 30 years, presented with a clinical association of mal de Meleda and congenital cataract. The two patients exhibited diffuse palmoplantar keratodermas. One of them presented with a total posterior subcapsular cataract and had a best corrected visual acuity at 1/20 in the left eye and with the right eye was only able to count fingers at a distance of one foot. The other woman had a slight posterior subcapsular lenticular opacity and her best corrected visual acuity was 8/10 in the right eye and with her left eye she was only able to count fingers at a distance of one foot. A mutational analysis of their ARS gene revealed the presence of the homozygous missense mutation C99Y and two single nucleotide polymorphisms (-55G>C and -60G>C). The splice mutation (c.1327+4A-G) within intron 12 of the HSF4 gene, which has been previously described in Tunisian families with congenital cataract, was not found in the two probands within this family. Conclusion To the best of our knowledge, such original clinical association has not been reported previously. The association of these two autosomal recessive diseases might have occurred in this family due to a high degree of inbreeding. The C99Y mutation may be specific to the Tunisian population as it has been exclusively reported so far in only three Tunisian families with mal de Meleda.</p
The metabolic signaling of the nucleoredoxin-like 2 gene supports brain function
International audienceThe nucleoredoxin gene NXNL2 encodes for two products through alternative splicing, rod-derived cone viability factor-2 (RdCVF2) that mediates neuronal survival and the thioredoxin-related protein (RdCVF2L), an enzyme that regulates the phosphorylation of TAU. To investigate the link between NXNL2 and tauopathies, we studied the Nxnl2 knockout mouse (Nxnl2â/â). We established the expression pattern of the Nxnl2 gene in the brain using a Nxnl2 reporter mouse line, and characterized the behavior of the Nxnl2â/â mouse at 2 months of age. Additionally, long term potentiation and metabolomic from hippocampal specimens were collected at 2 months of age. We studied TAU oligomerization, phosphorylation and aggregation in Nxnl2â/â brain at 18 months of age. Finally, newborn Nxnl2â/â mice were treated with adeno-associated viral vectors encoding for RdCVF2, RdCVF2L or both and measured the effect of this therapy on long-term potential, glucose metabolism and late-onset tauopathy. Nxnl2â/â mice at 2 months of age showed severe behavioral deficiency in fear, pain sensitivity, coordination, learning and memory. The Nxnl2â/â also showed deficits in long-term potentiation, demonstrating that the Nxnl2 gene is involved in regulating brain functions. Dual delivery of RdCVF2 and RdCVF2L in newborn Nxnl2â/â mice fully correct long-term potentiation through their synergistic action. The expression pattern of the Nxnl2 gene in the brain shows a predominant expression in circumventricular organs, such as the area postrema. Glucose metabolism of the hippocampus of Nxnl2â/â mice at 2 months of age was reduced, and was not corrected by gene therapy. At 18-month-old Nxnl2â/â mice showed brain stigmas of tauopathy, such as oligomerization, phosphorylation and aggregation of TAU. This late-onset tauopathy can be prevented, albeit with modest efficacy, by recombinant AAVs administrated to newborn mice. The Nxnl2â/â mice have memory dysfunction at 2-months that resembles mild-cognitive impairment and at 18-months exhibit tauopathy, resembling to the progression of Alzheimer's disease. We propose the Nxnl2â/â mouse is a model to study multistage aged related neurodegenerative diseases. The NXNL2 metabolic and redox signaling is a new area of therapeutic research in neurodegenerative diseases
Differential impact of consanguineous marriages on autosomal recessive diseases in Tunisia
International audienceObjectives Consanguinity is common in Tunisia. However, little information exists on its impact on recessive disorders. In this study, we evaluate the impact of consanguineous marriages on the occurrence of some specific autosomal recessive disorders and consider how other factors, such as population substructure and mutation frequency, may be of equal importance in disease prevalence. Methods Consanguinity profiles were retrospectively studied among 425 Tunisian patients suffering from autosomal recessive xeroderma pigmentosum, dystrophic epidermolysis bullosa, nonsyndromic retinitis pigmentosa, Gaucher disease, Fanconi anemia, glycogenosis type I, and ichthyosis, and compared to those of a healthy control sample. Results Consanguinity was observed in 341 cases (64.94%). Consanguinity rates per disease were 75.63, 63.64, 60.64, 61.29, 57.89, 73.33, and 51.28%, respectively. First-cousin marriages were the most common form of consanguinity (48.94%) with the percentages of 55.46, 45.46, 47.87, 48.39, 45.61, 56.66, and 35.90%, respectively. A very high level of geographic endogamy was also observed (93.92%), with the values by disease ranging between 75.86 and 96.64%. We observed an overall excess risk associated to consanguinity of nearly sevenfold which was proportional to the number of affected siblings and the frequency of disease allele in the family. Consanguinity was significantly associated with the first five cited diseases (odds ratio=24.41, 15.17, 7.5, 5.53, and 5.07, respectively). However, no meaningful effects were reported among the remaining diseases. Conclusions This study reveals a variation in the excess risk linked to consanguinity according to the type of disorder, suggesting the potential of cryptic population substructure to contribute to disease incidence in populations with complex social structure like Tunisia. It also emphasizes the role of other health and demographic aspects such as mutation frequency and reproductive replacement in diseases etiology. (c) 2015 Wiley Periodicals, Inc
Clinical and genetic investigation of isolated microspherophakia in a consanguineous Tunisian family
Clinical and genetic investigation of a large Tunisian family with complete achromatopsia: identification of a new nonsense mutation in GNAT2 gene.
Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119-69G>C, c.161+66A>T and c.875-31G>C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation. This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and the largest family with recessive achromatopsia involving GNAT2; thus, providing a unique opportunity for genotype-phenotype correlation for this extremely rare condition