7 research outputs found

    Parameterization of canopy resistance for modeling the energy partitioning of a paddy rice field

    No full text
    Models for predicting hourly canopy resistance (rc) and latent heat flux (LET) based on the Penman–Monteith (PM) and bulk transfer methods are presented. The micrometeorological data and LET were observed during paddy rice-growing seasons in 2010 in Japan. One approach to model rc was using an aerodynamic resistance (ra) and climatic resistance (r*), while another one was based on a relationship with solar radiation (SR). Nonlinear relationships between rc and r*, and between rc and SR were found for different growing stages of the rice crop. The constructed rc models were integrated to the PM and bulk transfer methods and compared with measured LET using a Bowen ratio–energy balance method. The root mean square errors (RMSEs) were 155.2 and 170.5 W m−2 for the bulk transfer method with rc estimated using r* and with a function of SR, respectively, while the RMSEs were 87.4 and 85.7 W m−2 for the PM method with rc estimated using r* and SR, respectively. The rc integrated PM equation provided better performance than the bulk transfer equation. The results also revealed that neglecting the effect of ra on rc did not yield a significant difference in predicting LET.Water Resource

    Determination of crop and soil evaporation coefficients for estimating evapotranspiration in a paddy field

    No full text
    Accurate estimation of evapotranspiration is important in efficient water management for improving water use efficiency. In order to obtain evapotranspiration and evaporation beneath the canopy using the Food and Agriculture Organization (FAO) method, pan evaporation was used instead of reference evapotranspiration calculated by the Penman-Monteith equation with detailed meteorological data. The total crop coefficient and soil evaporation coefficient were determined using actual measured daytime evapotranspiration and evaporation by the Bowen ratio energy balance and lysimeter, respectively, in a rice paddy field in Japan. The average evapotranspiration was 5.3 mm/d, 4.4 mm/d, 7.4 mm/d and 6.3 mm/d and crop coefficient was 0.79, 1.18, 1.01 and 0.86 for the initial stage, development stage, middle-season stage and late-season stage, respectively. The evaporation was low and almost constant with an average value around 0.77 mm/d when the leaf area index (LAI) reached 3. The proposed average crop coefficients for different growing stages were applied to estimate daytime evapotranspiration and found suitable. A simple soil water evaporation coefficient model was developed using leaf area index for practical use and it was found that it could accurately estimate evaporation.Water Resource

    A Dwarfing Gene Sd1-d (Dee-geo-woo-gen Dwarf) on Lodging Resistance and Related Traits in Rice

    Full text link
    A dwarfing allele at the sd1 locus on chromosome 1 in rice, sd1-d, has been playing important role for developing lodging-resistant and high-yielding indica varieties IR8 and IR36. The dominant allele SD1 for long culm at the locus is differentiated into SD1-in and SD1-ja that are harbored in indica and japonica subspecies, respectively. The sd1-d of IR36 was substituted with SD1-in or SD1-ja by 17 backcrosses with IR36, and two isogenic tall lines were developed by using an indica variety IR5867 and a japonica one ‘Koshihikari' as donors, which were denoted by “5867-36” and “Koshi-36'', respectively. The present study was conducted to examine the effect of dwarfing gene sd1-d on lodging resistance and related traits, compared with SD1-in and SD1-ja. Two isogenic lines and IR36 were cultivated in the field of the Faculty of Agriculture and Marine Science, Kochi University, Japan during 2017. Regarding index of lodging (g·cm/g × 100), genotypes were in the order: 5867-36 (97.4) > Koshi-36 (74.1) > IR36 (46.0) on the 21st-day after 80%-heading, and they were in the same order on 10th-day after 80%-heading. The 4th-panicle length (cm) was in the order: 5867-36 (118.7) > Koshi-36 (97.6) > IR36 (78.6). Similarly, the 4th-top weight (g) was in the order: 5867-36 (12.2) > Koshi-36 (10.2) > IR36 (9.6). The highest breaking strength (g) was recorded in IR36 (1649) followed by 5867-36 (1493) whereas the lowest breaking strength (g) was recorded in Koshi-36 (1360). Consequently, it is inferred that sd1-d enhances lodging resistance due to the decreases in the length and weight above the 4th-internode as well as the increase of breaking strength. The effect of SD1-in on lodging resistance is lower than that of SD1-ja
    corecore