171 research outputs found

    From the Mendeleev periodic table to particle physics and back to the periodic table

    Get PDF
    We briefly describe in this paper the passage from Mendeleev's chemistry (1869) to atomic physics (in the 1900's), nuclear physics (in the 1932's) and particle physics (from 1953 to 2006). We show how the consideration of symmetries, largely used in physics since the end of the 1920's, gave rise to a new format of the periodic table in the 1970's. More specifically, this paper is concerned with the application of the group SO(4,2)xSU(2) to the periodic table of chemical elements. It is shown how the Madelung rule of the atomic shell model can be used for setting up a periodic table that can be further rationalized via the group SO(4,2)xSU(2) and some of its subgroups. Qualitative results are obtained from this nonstandard table.Comment: 15 pages; accepted for publication in Foundations of Chemistry (special issue to commemorate the one hundredth anniversary of the death of Mendeleev who died in 1907); version 2: 16 pages; some sentences added; acknowledgment and references added; misprints correcte

    On a classical spectral optimization problem in linear elasticity

    Full text link
    We consider a classical shape optimization problem for the eigenvalues of elliptic operators with homogeneous boundary conditions on domains in the NN-dimensional Euclidean space. We survey recent results concerning the analytic dependence of the elementary symmetric functions of the eigenvalues upon domain perturbation and the role of balls as critical points of such functions subject to volume constraint. Our discussion concerns Dirichlet and buckling-type problems for polyharmonic operators, the Neumann and the intermediate problems for the biharmonic operator, the Lam\'{e} and the Reissner-Mindlin systems.Comment: To appear in the proceedings of the workshop `New Trends in Shape Optimization', Friedrich-Alexander Universit\"{a}t Erlangen-Nuremberg, 23-27 September 201

    Detection of K-Ras mutations in tumour samples of patients with non-small cell lung cancer using PNA-mediated PCR clamping

    Get PDF
    Non-small cell lung cancers (NSCLC), in particular adenocarcinoma, are often mixed with normal cells. Therefore, low sensitivity of direct sequencing used for K-Ras mutation analysis could be inadequate in some cases. Our study focused on the possibility to increase the detection of K-Ras mutations in cases of low tumour cellularity. Besides direct sequencing, we used wild-type hybridisation probes and peptide-nucleic-acid (PNA)-mediated PCR clamping to detect mutations at codons 12 and 13, in 114 routine consecutive NSCLC frozen surgical tumours untreated by targeted drugs. The sensitivity of the analysis without or with PNA was 10 and 1% of tumour DNA, respectively. Direct sequencing revealed K-Ras mutations in 11 out of 114 tumours (10%). Using PNA-mediated PCR clamping, 10 additional cases of K-Ras mutations were detected (21 out of 114, 18%, P<0.005), among which five in samples with low tumour cellularity. In adenocarcinoma, K-Ras mutation frequency increased from 7 out of 55 (13%) by direct sequencing to 15 out of 55 (27%) by clamped-PCR (P<0.005). K-Ras mutations detected by these sensitive techniques lost its prognostic value. In conclusion, a rapid and sensitive PCR-clamping test avoiding macro or micro dissection could be proposed in routine analysis especially for NSCLC samples with low percentage of tumour cells such as bronchial biopsies or after neoadjuvant chemotherapy

    In Vivo Chromatin Organization of Mouse Rod Photoreceptors Correlates with Histone Modifications

    Get PDF
    BACKGROUND: The folding of genetic information into chromatin plays important regulatory roles in many nuclear processes and particularly in gene transcription. Post translational histone modifications are associated with specific chromatin condensation states and with distinct transcriptional activities. The peculiar chromatin organization of rod photoreceptor nuclei, with a large central domain of condensed chromatin surrounded by a thin border of extended chromatin was used as a model to correlate in vivo chromatin structure, histone modifications and transcriptional activity. METHODOLOGY: We investigated the functional relationships between chromatin compaction, distribution of histone modifications and location of RNA polymerase II in intact murine rod photoreceptors using cryo-preparation methods, electron tomography and immunogold labeling. Our results show that the characteristic central heterochromatin of rod nuclei is organized into concentric domains characterized by a progressive loosening of the chromatin architecture from inside towards outside and by specific combinations of silencing histone marks. The peripheral heterochromatin is formed by closely packed 30 nm fibers as revealed by a characteristic optical diffraction signal. Unexpectedly, the still highly condensed most external heterochromatin domain contains acetylated histones, which are usually associated with active transcription and decondensed chromatin. Histone acetylation is thus not sufficient in vivo for complete chromatin decondensation. The euchromatin domain contains several degrees of chromatin compaction and the histone tails are hyperacetylated, enriched in H3K4 monomethylation and hypo trimethylated on H3K9, H3K27 and H4K20. The transcriptionally active RNA polymerases II molecules are confined in the euchromatin domain and are preferentially located at the vicinity of the interface with heterochromatin. CONCLUSIONS: Our results show that transcription is located in the most decondensed and highly acetylated chromatin regions, but since acetylation is found associated with compact chromatin it is not sufficient to decondense chromatin in vivo. We also show that a combination of histone marks defines distinct concentric heterochromatin domains

    Preferential in vitro assembly of nucleosome cores on some AT-rich regions of SV40 DNA.

    No full text
    We have found that nucleosomes reconstituted from histone octamers and SV40 DNA Form I by progressively decreasing the salt concentration from 2 M NaCl are formed preferentially around 0.27, 0.37, 0.50 and 0.85 on SV40 DNA (relative to the EcoRI site). When SV40 DNA Form III is used, the nucleosomes form mainly at 0.28, 0.38, 0.61 and 0.83. These sites are very close to both the sites of RNA chain initiation by calf thymus RNA polymerase B on SV40 DNA Form I (0.25, 0.35, 0.42 and 0.88) and the regions of the supercoiled DNA which are readily denaturable by T4 gene 32 protein (0.25, 0.47 and 0.88), and correspond to AT-rich regions as deduced from the nucleotide sequence of SV40 DNA. The physiologically important region around 0.67 is an unfavourable site for all three types of proteins, and corresponds to a GC-rich region surrounding a 17 base pair AT cluster

    The same amount of DNA is organized in in vitro-assembled nucleosomes irrespective of the origin of the histones.

    No full text
    The four histones H2A, H2B, H3 and H4 from calf thymus, CHO and sea urchin gastrula cells were associated by stepwise dialysis from 2 M NaCl with SV40 DNA Form I. The in vitro-assembled chromatins were visualized by electron microscopy and the size of the DNA fragments generated by digestion with DNase II was determined. Irrespective of the origin of the histones, the size of the smallest DNA band generated at early times of digestion was about 190 base pairs, whereas oligomeric DNA bands were multiples of 140 bp. These results support our previous proposal that the four histones H2A, H2B, H3 and H4 are able to organize more than 140 bp of DNA, but do not provide any evidence that the variability of histones H2A and H2B plays a role in the variability of the DNA repeat length of native chromatins

    Synthesis of phospholipids linked to steroid hormone derivatives

    No full text
    International audienc
    • …
    corecore