6 research outputs found

    Prenatally diagnosed submicroscopic familial aberrations at 18p11.32 without phenotypic effect

    Get PDF
    Background: Recent development of MLPA (Multiplex-Ligation-dependent Probe Amplification, MRC-Holland) and microarray technology allows detection of a wide range of new submicroscopic abnormalities. Publishing new cases and case reviews associated with both clinical abnormalities and a normal phenotype is of great value. Findings/results. We report on two phenotypically normal foetuses carrying a maternally-inherited interstitial submicroscopic abnormality of chromosome 18p11.32. Both abnormalities were found with the aneuploidy MLPA kit P095 during rapid aneuploidy detection, which was offered along with conventional karyotyping. Foetus 1 and its mother have a 1,7 Mb deletion and foetus 2 and its mother have a 1,9 Mb duplication. In both cases normal babies were born. We used the HumanCytoSNP-12 array of Illumina to visualize the CNVs and map the breakpoints. Conclusions: We suggest that a CNV at 18p11.32 (528,050-2,337,486) may represent a new benign euchromatic variant

    Genomic SNP array as a gold standard for prenatal diagnosis of foetal ultrasound abnormalities

    Get PDF
    Background: We have investigated whether replacing conventional karyotyping by SNP array analysis in cases of foetal ultrasound abnormalities would increase the diagnostic yield and speed of prenatal diagnosis in clinical practice. Findings/results. From May 2009 till June 2011 we performed HumanCytoSNP-12 array (HCS) (http://www.Illumina.com) analysis in 207 cases of foetal structural abnormalities. HCS allows detecting unbalanced genomic abnormalities with a resolution of about 150/200 kb. All cases were selected by a clinical geneticist after excluding the most common aneuploidies by RAD (rapid aneuploidy detection). Pre-test genetic counselling was offered in all cases. In 24/207 (11,6%) foetuses a clinically relevant genetic abnormality was detected. Only 8/24 abnormalities would have been detected if only routine karyotyping was performed. Submicroscopic abnormalities were found in 16/207 (7,7%) cases. The array results were achieved within 1-2 weeks after amniocentesis. Conclusions: Prenatal SNP array testing is faster than karyotyping and allows detecting much smaller aberrations (∼0.15 Mb) in addition to the microscopic unbalanced chromosome abnormalities detectable with karyotyping (∼ > 5 Mb). Since karyotyping would have missed 66% (16/24) of genomic abnormalities in our cohort, we propose to perform genomic high resolution array testing assisted by pre-test counselling as a primary prenatal diagnostic test in cases of foetal ultrasound abnormalities

    Schémas de services collectifs : une nouvelle ambition pour les territoires

    No full text
    In recent studies on prenatal testing for Noonan syndrome (NS) in fetuses with an increased nuchal translucency (NT) and a normal karyotype, mutations have been reported in 9-16% of cases. In this study, DNA of 75 fetuses with a normal karyotype and abnormal ultrasound findings was tested in a diagnostic setting for mutations in (a subset of) the four most commonly mutated NS genes. A de novo mutation in either PTPN11, KRAS or RAF1 was detected in 13 fetuses (17.3%). Ultrasound findings were increased NT, distended jugular lymphatic sacs (JLS), hydrothorax, renal anomalies, polyhydramnios, cystic hygroma, cardiac anomalies, hydrops fetalis and ascites. A second group, consisting of anonymized DNA of 60 other fetuses with sonographic abnormalities, was tested for mutations in 10 NS genes. In this group, five possible pathogenic mutations have been identified (in PTPN11 (n=2), RAF1, BRAF and MAP2K1 (each n=1)). We recommend prenatal testing of PTPN11, KRAS and RAF1 in pregnancies with an increased NT and at least one of the following additional features: polyhydramnios, hydrops fetalis, renal anomalies, distended JLS, hydrothorax, cardiac anomalies, cystic hygroma and ascites. If possible, mutation analysis of BRAF and MAP2K1 should be considered
    corecore