1,468 research outputs found

    From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds

    Full text link
    We report on structural, magnetic and magnetocaloric properties of MnxFe1.95-xP0.50Si0.50 (x > 1.10) compounds. With increasing the Mn:Fe ratio, a first-order magneto-elastic transition gradually changes into a first-order magneto-structural transition via a second-order magnetic transition. The study also shows that thermal hysteresis can be tuned by varying the Mn:Fe ratio. Small thermal hysteresis (less than 1 K) can be obtained while maintaining a giant magnetocaloric effect. This achievement paves the way for real refrigeration applications using magnetic refrigerants.Comment: 4 pages, 3 figures, Supplemental Materia

    Generation of frequency multiplexed entangled single photons assisted by the entanglement

    Full text link
    We present a scheme to generate the frequency multiplexed entangled (FME) single photons based on the entanglement between two species atomic mixture ensemble. The write and reads fields driven according to a certain timing sequence, the generation of FME single photons can be repeated until success is achieved. The source might have significant applications in wavelength division multiplexing quantum key distribution.Comment: 4 pages, 4 figures, submitted to PR

    Large deformation of spherical vesicle studied by perturbation theory and Surface evolver

    Full text link
    With tangent angle perturbation approach the axial symmetry deformation of a spherical vesicle in large under the pressure changes is studied by the elasticity theory of Helfrich spontaneous curvature model.Three main results in axial symmetry shape: biconcave shape, peanut shape, and one type of myelin are obtained. These axial symmetry morphology deformations are in agreement with those observed in lipsome experiments by dark-field light microscopy [Hotani, J. Mol. Biol. 178, (1984) 113] and in the red blood cell with two thin filaments (myelin) observed in living state (see, Bessis, Living Blood Cells and Their Ultrastructure, Springer-Verlag, 1973). Furthermore, the biconcave shape and peanut shape can be simulated with the help of a powerful software, Surface Evolver [Brakke, Exp. Math. 1, 141 (1992) 141], in which the spontaneous curvature can be easy taken into account.Comment: 16 pages, 6 EPS figures and 2 PS figure

    Effects of losses in the hybrid atom-light interferometer

    Get PDF
    Enhanced Raman scattering can be obtained by injecting a seeded light field which is correlated with the initially prepared collective atomic excitation. This Raman amplification process can be used to realize atom-light hybrid interferometer. We numerically calculate the phase sensitivities and the signal-to-noise ratios of this interferometer with the method of homodyne detection and intensity detection, and give their differences between this two methods. In the presence of loss of light field and atomic decoherence the measure precision will be reduced which can be explained by the break of the intermode decorrelation conditions of output modesComment: 9 pages, 7 figure

    A Dispersive Analysis on the f0(600)f_0(600) and f0(980)f_0(980) Resonances in γγ→π+π−,π0π0\gamma\gamma\to\pi^+\pi^-, \pi^0\pi^0 Processes

    Full text link
    We estimate the di-photon coupling of f0(600)f_0(600), f0(980)f_0(980) and f2(1270)f_2(1270) resonances in a coupled channel dispersive approach. The f0(600)f_0(600) di-photon coupling is also reinvestigated using a single channel TT matrix for ππ\pi\pi scattering with better analyticity property, and it is found to be significantly smaller than that of a qˉq\bar qq state. Especially we also estimate the di-photon coupling of the third sheet pole located near KˉK\bar KK threshold, denoted as f0III(980)f_0^{III}(980). It is argued that this third sheet pole may be originated from a coupled channel Breit-Wigner description of the f0(980)f_0(980) resonance.Comment: 24 pages and 13 eps figures. A nuerical bug in previous version is fixed. Some results changed. References and new figures added. Version to appear in Phys. Rev.

    Atom-Light Hybrid Interferometer

    Get PDF
    A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons
    • …
    corecore