7 research outputs found

    Towards data-driven stochastic predictive control

    Full text link
    Data-driven predictive control based on the fundamental lemma by Willems et al. is frequently considered for deterministic LTI systems subject to measurement noise. However, little has been done on data-driven stochastic control. In this paper, we propose a data-driven stochastic predictive control scheme for LTI systems subject to possibly unbounded additive process disturbances. Based on a stochastic extension of the fundamental lemma and leveraging polynomial chaos expansions, we construct a data-driven surrogate Optimal Control Problem (OCP). Moreover, combined with an online selection strategy of the initial condition of the OCP, we provide sufficient conditions for recursive feasibility and for stability of the proposed data-driven predictive control scheme. Finally, two numerical examples illustrate the efficacy and closed-loop properties of the proposed scheme for process disturbances governed by different distributions

    Behavioral Theory for Stochastic Systems? A Data-driven Journey from Willems to Wiener and Back Again

    Full text link
    The fundamental lemma by Jan C. Willems and co-workers, which is deeply rooted in behavioral systems theory, has become one of the supporting pillars of the recent progress on data-driven control and system analysis. This tutorial-style paper combines recent insights into stochastic and descriptor-system formulations of the lemma to further extend and broaden the formal basis for behavioral theory of stochastic linear systems. We show that series expansions -- in particular Polynomial Chaos Expansions (PCE) of L2L^2-random variables, which date back to Norbert Wiener's seminal work -- enable equivalent behavioral characterizations of linear stochastic systems. Specifically, we prove that under mild assumptions the behavior of the dynamics of the L2L^2-random variables is equivalent to the behavior of the dynamics of the series expansion coefficients and that it entails the behavior composed of sampled realization trajectories. We also illustrate the short-comings of the behavior associated to the time-evolution of the statistical moments. The paper culminates in the formulation of the stochastic fundamental lemma for linear (descriptor) systems, which in turn enables numerically tractable formulations of data-driven stochastic optimal control combining Hankel matrices in realization data (i.e. in measurements) with PCE concepts.Comment: 30 pages, 8 figure

    Pathwise turnpike and dissipativity results for discrete-time stochastic linear-quadratic optimal control problems

    Full text link
    We investigate pathwise turnpike behavior of discrete-time stochastic linear-quadratic optimal control problems. Our analysis is based on a novel strict dissipativity notion for such problems, in which a stationary stochastic process replaces the optimal steady state of the deterministic setting. The analytical findings are illustrated by a numerical example

    Turnpike and dissipativity in generalized discrete-time stochastic linear-quadratic optimal control

    Full text link
    We investigate different turnpike phenomena of generalized discrete-time stochastic linear-quadratic optimal control problems. Our analysis is based on a novel strict dissipativity notion for such problems, in which a stationary stochastic process replaces the optimal steady state of the deterministic setting. We show that from this time-varying dissipativity notion, we can conclude turnpike behaviors concerning different objects like distributions, moments, or sample paths of the stochastic system and that the distributions of the stationary pair can be characterized by a stationary optimization problem. The analytical findings are illustrated by numerical simulations

    A Polynomial Chaos Approach to Stochastic LQ Optimal Control: Error Bounds and Infinite-Horizon Results

    Full text link
    The stochastic linear-quadratic regulator problem subject to Gaussian disturbances is well known and usually addressed via a moment-based reformulation. Here, we leverage polynomial chaos expansions, which model random variables via series expansions in a suitable L2\mathcal{L}^2 probability space, to tackle the non-Gaussian case. We present the optimal solutions for finite and infinite horizons. Moreover, we quantify the truncation error and we analyze the infinite-horizon asymptotics. We show that the limit of the optimal trajectory is the unique solution to a stationary optimization problem in the sense of probability measures. A numerical example illustrates our findings

    ALADIN-α—An open-source MATLAB toolbox for distributed non-convex optimization

    Get PDF
    This article introduces an open-source software for distributed and decentralized non-convex optimization named ALADIN-α. ALADIN-α is a MATLAB implementation of tailored variants of the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm. It is user interface is convenient for rapid prototyping of non-convex distributed optimization algorithms. An improved version of the recently proposed bi-level variant of ALADIN is included enabling decentralized non-convex optimization with reduced information exchange. A collection of examples from different applications fields including chemical engineering, robotics, and power systems underpins the potential of ALADIN-α

    ALADIN-α\alpha -- An open-source MATLAB toolbox for distributed non-convex optimization

    Get PDF
    This paper introduces an open-source software for distributed and decentralized non-convex optimization named ALADIN-α\alpha. ALADIN-α\alpha is a MATLAB implementation of the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm, which is tailored towards rapid prototyping for non-convex distributed optimization. An improved version of the recently proposed bi-level variant of ALADIN is included enabling decentralized non-convex optimization. A collection of application examples from different applications fields including chemical engineering, robotics, and power systems underpins the application potential of ALADIN-α\alpha
    corecore