10 research outputs found

    Wild-type transthyretin cardiac amyloidosis (ATTRwt-CA), previously known as senile cardiac amyloidosis: Clinical presentation, diagnosis, management and emerging therapies

    Get PDF
    Cardiac amyloidosis is thought to be a rare group of diseases caused by extracellular deposition of misfolded proteins in the extracellular cardiac matrix resulting in heart failure with preserved ejection fraction (HFpEF). This review focuses on the similarities and differences between the pathophysiology, clinical presentation and diagnostic tests of wild-type transthyretin cardiac amyloidosis (ATTRwt-CA) compared to immunoglobulin light chain amyloidosis and hereditary cardiac amyloidosis. We address some obstacles to timely diagnosis and opportunities for management of the clinical symptoms as well as possibility of future novel disease modifying therapies

    Stepwise multimodality imaging assists in atrial myxoma diagnosis and management

    Get PDF
    The case of a 67-year-old man who presented for elective gastroenterology procedures and was in atrial fibrillation is discussed. Transthoracic echocardiography revealed a large atrial mass. Preoperative coronary angiography revealed a heavily vascularized mass. Use of cardiac magnetic resonance identified the cardiac mass as likely an atrial myxoma.

    Capacitated dynamic lot sizing problems in closed-loop supply chain

    No full text
    In this paper, we address the capacitated dynamic lot sizing problem arising in closed-loop supply chain where returned products are collected from customers. These returned products can either be disposed or be remanufactured to be sold as new ones again; hence the market demands can be satisfied by either newly produced products or remanufactured ones. The capacities of production, disposal and remanufacturing are limited, and backlogging is not allowed. A general model of this problem is formulated, and several useful properties of the problem are characterized when cost functions are concave. Moreover, this problem is analyzed and solved to optimality using dynamic programming algorithms under different scenarios. It is shown that the problem with only disposal or remanufacturing can be converted into a traditional capacitated lot sizing problem and be solved by a polynomial algorithm if the capacities are constant. A pseudo-polynomial algorithm is proposed for the problem with both capacitated disposal and remanufacturing. The problem with capacitated production and remanufacturing and the problem with uncapacitated production and capacitated remanufacturing are also analyzed and solved. Through numerical experiments we show that the proposed algorithms perform well when solving problems of practical sizes. From the experimental results also indicates that it is worthwhile to expand the remanufacturing capacity only when returned products exist in a relatively long planning horizon, and production capacities have little effect on the remanufacturing plan when the demand is mainly satisfied by the production.Closed-loop supply chain Capacitated dynamic lot sizing problem Production Remanufacturing Disposal

    Optimization of the culture condition of Bacillus mucilaginous using Agaricus bisporus industrial wastewater by Plackett–Burman combined with Box–Behnken response surface method

    No full text
    Abstract In the present study, conditions for Bacillus mucilaginous fermentation using Agaricus bisporus wastewater as culture medium were optimized. We analyzed the total number of living B. mucilaginous in the fermentation broth using multispectral imaging flow cytometry. Single-factor experiments were carried out, where a Plackett–Burman design was used to screen out three factors from the original six factors of processing wastewater solubility, initial pH, inoculum size, liquid volume, culture temperature, and rotation speed that affected the total number of viable B. mucilaginous. The Box–Behnken response surface method was used to optimize interactions between the three main factors and predict optimal fermentation conditions. Factors significantly affecting the total number of viable B. mucilaginous, including shaking speed, culturing temperature, and initial pH, were investigated. The optimum conditions for B. mucilaginous fermentation in A. bisporus wastewater were a rotational speed of 195 rpm, culture temperature of 29 °C, initial pH of 6.5, solubility of 0.5%, 8% inoculation volume, and 90 mL liquid volume in a 250 mL flask, culture time of 48 h. Under these conditions, the concentration of total viable bacteria reached 2.16 ± 0.02 × 108 Obj/mL, which meets the national standard. A. bisporus wastewater can be used for the cultivation of B. mucilaginous

    Nano-Sized Calcium Copper Titanate for the Fabrication of High Dielectric Constant Functional Ceramic–Polymer Composites

    No full text
    A novel calcium copper titanate (CaCu3Ti4O12)–polyvinylidene fluoride composite (CCTO@PVDF) with Cu-deficiency was successfully prepared through the molten salt-assisted method. The morphology and structure of polymer composites uniformly incorporated with CCTO nanocrystals were characterized. At the same volume fraction, the CCTOs with Cu-deficiency displayed higher dielectric constants than those without post-treatment. A relatively high dielectric constant of 939 was obtained at 64% vol% CCTO@PVDF content, 78 times that of pure PVDF. The high dielectric constants of these composites were attributed to the homogeneous dispersion and interfacial polarization of the CCTO into the PVDF matrix. These composites also have prospective applications in high-frequency regions (106 Hz). The enhancement of the dielectric constant was predicted in several theoretical models, among which the EMT and Yamada models agreed well with the experimental results, indicating the excellent distribution in the polymer matrix

    Optimization of Cultural Conditions for Bacillus megaterium Cultured in Agaricus bisporus Industrial Wastewater

    No full text
    The aim of this study was to optimize the cultural conditions for Bacillus megaterium using Agaricus bisporus industrial wastewater as nature culture through response surface methodology. In our present study, we analyzed the total number of living B. megaterium in the fermentation broth using multispectral imaging flow cytometry. Plackett-Burman design was applied to evaluate the effects of six variables, namely, initial pH, industrial wastewater solubility, rotating speed, culture temperature, inoculum size, and loading volume. Loading volume, initial pH, and culture temperature were found to influence the biomass of B. megaterium significantly and were further optimized by Box-Behnken design. After verification test, the optimum fermentation conditions of B. megaterium using the A. bisporus processing wastewater as nature culture media were obtained as follows: initial pH of 7.4, culture temperature of 25°C, loading volume of 40 mL/250 mL, culture time of 24 h, industrial wastewater solubility of 1%, rotating speed of 200 rpm, and inoculum size of 8%. The predicted optimum model’s value was 8.88 × 108 Obj/mL and the average experimental value was 9.03 ± 0.02 × 108 Obj/mL, which met the national microbial fertilizers’ standard. Furthermore, the field experiment results showed that the fermentation broth of B. megaterium could significantly improve the yield of Spinacia oleracea L

    Metabolic Modulation and Potential Biomarkers of the Prognosis Identification for Severe Aortic Stenosis after TAVR by a Metabolomics Study

    No full text
    Objectives. To investigate the metabolic profile in patients with aortic stenosis (AS) after transcatheter aortic valve replacement (TAVR) and explore the potential biomarkers to predict prognosis after TAVR based on metabolomics. Methods and Results. Fifty-nine consecutive AS patients were prospectively recruited. Blood samples from the ascending aorta, coronary sinus, and peripheral vein at before and after TAVR were collected, respectively. Liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry were performed to analyze the metabolic profile before and after TAVR. Influential metabolites were identified by integrating the univariate test, multivariate analysis, and weighted gene coexpression network analysis (WGCNA) algorithm. PLS-DA analysis revealed a significant extremely early (within 30 minutes after TAVR) alterations of metabolites in the ascending aorta, coronary sinus, and peripheral vein. The early (within 7 days after TAVR) changed metabolites in the peripheral vein were involved in purine metabolism, primary bile acid biosynthesis, glycerolipid metabolism, amino sugar and nucleotide sugar metabolism, one carbon pool by folate and alanine, and the aspartate and glutamate metabolism pathway. We used volcano plots to find that the cardiac-specific changed metabolites were enriched to the sphingolipid metabolism pathway after TAVR. Besides, WGCNA algorithm was performed to reveal that arginine and proline metabolites could reflect left ventricle regression to some extent. Conclusion. This is the first study to reveal systemic and cardiac metabolites changed significantly in patients with AS after TAVR. Some altered metabolites involved in the arginine and proline metabolism pathway in the peripheral vein could predict left ventricle regression, which merited further study
    corecore