3 research outputs found

    Osteoclast fusion is initiated by a small subset of RANKL-stimulated monocyte progenitors, which can fuse to RANKL-unstimulated progenitors

    No full text
    Osteoclasts are multinucleated, bone-resorbing cells formed via fusion of monocyte progenitors, a process triggered by prolonged stimulation with RANKL, the osteoclast master regulator cytokine. Monocyte fusion into osteoclasts has been shown to play a key role in bone remodeling and homeostasis; therefore, aberrant fusion may be involved in a variety of bone diseases. Indeed, research in the last decade has led to the discovery of genes regulating osteoclast fusion; yet the basic cellular regulatory mechanism underlying the fusion process is poorly understood. Here, we applied a novel approach for tracking the fusion processes, using live-cell imaging of RANKL-stimulated and non-stimulated progenitor monocytes differentially expressing dsRED or GFP, respectively. We show that osteoclast fusion is initiated by a small (~ 2.4%) subset of precursors, termed “fusion founders”, capable of fusing either with other founders or with non-stimulated progenitors (fusion followers), which alone, are unable to initiate fusion. Careful examination indicates that the fusion between a founder and a follower cell consists of two distinct phases: an initial pairing of the two cells, typically lasting 5–35 min, during which the cells nevertheless maintain their initial morphology; and the fusion event itself. Interestingly, during the initial pre-fusion phase, a transfer of the fluorescent reporter proteins from nucleus to nucleus was noticed, suggesting crosstalk between the founder and follower progenitors via the cytoplasm that might directly affect the fusion process, as well as overall transcriptional regulation in the developing heterokaryon

    Subcapsular sinus macrophages promote melanoma metastasis to the sentinel lymph nodes via an IL-1α-STAT3 axis.

    Get PDF
    During melanoma metastasis, tumor cells originating in the skin migrate via lymphatic vessels to the sentinel lymph nodes (sLNs). This process facilitates tumor cell spread across the body. Here, we characterized the innate inflammatory response to melanoma in the metastatic microenvironment of the sLNs. We found that macrophages located in the subcapsular sinus (SS) produced pro-tumoral IL-1α after recognition of tumoral antigens. Moreover, we confirmed that the elimination of LN macrophages or the administration of an IL-1α-specific blocking antibody reduced metastatic spread. To understand the mechanism of action of IL-1α in the context of the sLN microenvironment, we applied single-cell RNA sequencing to microdissected metastases obtained from animals treated with the IL-1α-specific blocking antibody. Amongst the different pathways affected, we identified STAT3 as one of the main targets of IL-1α signaling in metastatic tumor cells. Moreover, we found that the antitumoral effect of the anti-IL-1α was not mediated by lymphocytes because Il1r1 knockout mice did not show significant differences in metastasis growth. Finally, we found a synergistic anti-metastatic effect of the combination of IL-1α blockade and STAT3 inhibition with stattic, highlighting a new immunotherapy approach to preventing melanoma metastasis
    corecore