456 research outputs found

    Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study

    Get PDF
    In vivo magnetic resonance imaging (MRI) and angiography were applied to the marine spider crab Maja squinado for a study of temperature effects and thermal tolerance. Ventilation and haemolymph circulation were investigated during progressive cooling from 12°C to 2°C. The anatomical resolution of MR images from Maja squinado obtained with a standard spin echo sequence were suitable to resolve the structures of various internal organs. The heart of the animal could be depicted without movement artifacts. The use of a flow compensated gradient echo sequence allowed simultaneous observations of ventilation, reflected by water flow through the gill chambers as well as of haemolymph flow. Simultaneous investigation of various arteries was possible by use of flow weighted MRI. In addition to those accessible by standard invasive flow sensitive doppler sensors, flow changes in gill, leg arteries and the venous return could be observed. Both ventilation and haemolymph flow decreased during progressive cooling and changes in haemolymph flow varied between arteries. Haemolymph flow through the Arteria sternalis, some gill and leg arteries was maintained at low temperatures indicating a reduced thermal sensitivity of flow in selected vessels. In support of previous invasive studies of haemolymph flow as well as heart and ventilation rates, the results demonstrate that the operation of gills and the maintenance of locomotor activity are critical for cold tolerance. A shift in haemolymph flow between arteries likely occurs to ensure the functioning of locomotion and ventilation in the cold

    IS GAIT ANALYSIS USEFUL IN REHABILITATION ?

    Get PDF
    INTRODUCTION: In current clinical practice, physical examination, X-rays and subjective impressions are the most frequent methods for evaluation of an individual’s orthopaedic condition. These familiar methods cannot predict the biomechanical function (i.e. forces, structural integrity) of joints, of a complete leg or of the locomotor apparatus. In addition to clinical evaluation more specific functional measurements of the movement apparatus, particularly during gait, seem to be desirable. This presentation illustrates our experiences with instrumented gait analysis and its efficiency as a scientific and clinical tool. The main problem is to look for sensitive parameters (indicators), which characterize the functional state of patient’s locomotor apparatus. METHODS: Our gait analysis is based on measurement of kinematic and kinetic data during level walking on a 12 m walkway, and sometimes EMG data for special cases. Measurement systems are one optoelectronical device (PRIMAS, Delft, NL) and two force plates (KISTLER, Winterthur, CH). Since 1992, 600 individuals (including amputees, orthopaedic patients and normal subjects) were measured in our gait lab. Selected systematic tests were performed with amputees, whereby different prosthetic components and prosthetic alignments were used. Also, single cases without positive clinical or X-ray findings, who complained of functional pain, received gait analysis. RESULTS: Joint moments are the single best indicators of the manner in which amputees adapt their motor activity to changes in the prosthesis. Patients complaining of pain despite negative clinical findings walk with asymmetrical muscle joint moments. Such joint moments often objectively document the patient’s rehabilitation state and his or her progress. CONCLUSIONS: The human gait cycle is a consistant and precise repeatable complex of movements performed one million times annually. Therefore, gait analysis can only be clinically useful if measurement systems can very sensitively and fastly determine external joint moments. For orthopaedic and prosthetic tasks, such measurement equipment is now available. In addition to instrumented gait analysis biomechanical knowledge is absolutly necessary so that orthopaedic patients can benefit from the valuable data of gait and motion analysis

    CO2 induced pHi changes in the brain of polar fish: a TauCEST application

    Get PDF
    Chemical exchange saturation transfer from taurine to water (TauCEST) is primarily detectable in the low temperature range. Since, TauCEST asymmetry is bijective in the physiological pH-range (6.8-7.5), TauCEST is a potential candidate for in vivo studies on brain of polar fish. The specificity of TauCEST MRI on the brain of polar cod at 1.5°C shows a taurine contribution of 65%. TauCEST in brain of polar cod significantly increased under elevated CO2 concentrations by about 1.34%-3.17% in comparison to control, reflecting pHi changes since localized 1H NMR spectra show no significant changes in metabolite concentration for the different treatments

    Sensory motor systems of artificial and natural hands

    Get PDF
    The surgeon Ambroise Paré designed an anthropomorphic hand for wounded soldiers in the 16th century. Since that time, there have been advances in technology through the use of computer-aided design, modern materials, electronic controllers and sensors to realise artificial hands which have good functionality and reliability. Data from touch, object slip, finger position and temperature sensors, mounted in the fingers and on the palm, can be used in feedback loops to automatically hold objects. A study of the natural neuromuscular systems reveals a complexity which can only in part be realised today with technology. Highlights of the parallels and differences between natural and artificial hands are discussed with reference to the Southampton Hand. The anatomical structure of parts of the natural systems can be made artificially such as the antagonist muscles using tendons. Theses solutions look promising as they are based on the natural form but in practice lack the desired physical specification. However, concepts of the lower spinal loops can be mimicked in principle. Some future devices will require greater skills from the surgeon to create the interface between the natural system and an artificial device. Such developments may offer a more natural control with ease of use for the limb deficient person

    Untargeted metabolic profiling reveals distinct patterns of thermal sensitivity in two related notothenioids

    Get PDF
    Antarctic marine ectothermal animals may be affected more than temperate species by rising temperatures due to ongoing climate change. Their specialisation on stable cold temperatures makes them vulnerable to even small degrees of warming. Thus, addressing the impacts of warming on Antarctic organisms and identifying their potentially limited capacities to respond is of interest. The objective of the study was to determine changes in metabolite profiles related to temperature acclimation. In a long-term experiment adult fish of two Antarctic sister species Notothenia rossii and Notothenia coriiceps were acclimated to 0 °C and 5 °C for three months. Impacts and indicators of acclimation at the cellular level were determined from metabolite profiles quantified in gill tissue extracts using nuclear magnetic resonance (NMR) spectroscopy. Furthermore, the metabolite profiles of the two con-generic species were compared. NMR spectroscopy identified 37 metabolites that were present in each sample, but varied in their absolute concentration between species and between treatments. A decrease in amino acid levels indicated an increased amino acid catabolism after incubation to 5 °C. In addition, long term warming initiated shifts in organic osmolyte concentrations and modified membrane structure observed by altered levels of phospholipid compounds. Differences in the metabolite profile between the two notothenioid species can be related to their divergent lifestyles, especially their different rates of motor activity. Increased levels of the Krebs cycle intermediate succinate and a higher reduction of amino acid concentrations in warm-acclimated N. rossii showed that N. rossii is more affected by warming than N. coriiceps

    Water bicarbonate modulates the response of the shore crab Carcinus maenas to ocean acidification

    Get PDF
    Ocean acidification causes an accumulation of CO2 in marine organisms and leads to shifts in acid–base parameters. Acid–base regulation in gill breathers involves a net increase of internal bicarbonate levels through transmembrane ion exchange with the surrounding water. Successful maintenance of body fluid pH depends on the functional capacity of ion-exchange mechanisms and associated energy budget. For a detailed understanding of the dependence of acid–base regulation on water parameters, we investigated the physiological responses of the shore crab Carcinus maenas to 4 weeks of ocean acidification [OA, P(CO2)w = 1800 ”atm], at variable water bicarbonate levels, paralleled by changes in water pH. Cardiovascular performance was determined together with extra-(pHe) and intracellular pH (pHi), oxygen consumption, haemolymph CO2 parameters, and ion composition. High water P(CO2) caused haemolymph P(CO2) to rise, but pHe and pHi remained constant due to increased haemolymph and cellular [HCO3−]. This process was effective even under reduced seawater pH and bicarbonate concentrations. While extracellular cation concentrations increased throughout, anion levels remained constant or decreased. Despite similar levels of haemolymph pH and ion concentrations under OA, metabolic rates, and haemolymph flow were significantly depressed by 40 and 30%, respectively, when OA was combined with reduced seawater [HCO3−] and pH. Our findings suggest an influence of water bicarbonate levels on metabolic rates as well as on correlations between blood flow and pHe. This previously unknown phenomenon should direct attention to pathways of acid–base regulation and their potential feedback on whole-animal energy demand, in relation with changing seawater carbonate parameters

    The impact of ocean warming and acidification on the behaviour of two co-occurring Gadid species, Boreogadus saida and Gadus morhua from Svalbard

    Get PDF
    Ocean acidification induces strong behavioural alterations in marine fish as a conse- quence of acid−base regulatory processes in response to increasing environmental CO2 partial pressure. While these changes have been investigated in tropical and temperate fish species, nothing is known about behavioural effects on polar species. In particular, fishes of the Arctic Ocean will experience much greater acidification and warming than temperate or tropical species. Also, possible interactions of ocean warming and acidification are still understudied. Here we analysed the combined effects of warming and acidification on behavioural patterns of 2 fish species co-occurring around Svalbard, viz. polar cod Boreogadus saida and Atlantic cod Gadus morhua. We found a significant temperature effect on the spontaneous activity of B. saida, but not of G. morhua. Environmental CO2 did not significantly influence activity of either species. In con- trast, behavioural laterality of B. saida was affected by CO2 but not by temperature. Behavioural laterality of G. morhua was not affected by temperature or CO2; however, in this species, a possi- ble temperature dependency of CO2 effects on relative laterality may have been missed due to sample size restrictions. This study indicates that fish in polar ecosystems may undergo some, albeit less intense, behavioural disturbances under ocean acidification and in combination with ocean warming than observed in tropical species. It further accentuates species-specific differ- ences in vulnerability
    • 

    corecore