37 research outputs found

    The complete life cycle of Petrakia echinata

    Get PDF
    The teleomorph of Petrakia echinata (Peglion) Syd. & P. Syd. on leaves of Acer pseudoplatanus is described based on field collections, culture studies and ITS sequencing and was assigned to the genus Mycodidymella C.Z. Wei, Y. Harada & K. Katumoto. In addition, a Mycopappus anamorph and a presumed spermatial Phoma stage were observed and conspecificity with P. echinata was confirmed by culture morphology and ITS sequencing. The phylogenetic relationships between the Mycodidymella teleomorph of P. echinata and related taxa were studied using LSU nDNA sequences. The fungus causes brown spots on the leaves of the host plant, known as "Petrakia leaf blotch of sycamore maple

    Ecological consequences of Douglas fir ( Pseudotsuga menziesii ) cultivation in Europe

    Get PDF
    Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) was first introduced to Europe from North America more than 150years ago, was then planted on a large scale and is now the economically most important exotic tree species in European forests. This literature review summarizes the current knowledge on the effects of Douglas fir on soil chemistry, plants, arthropods and fungi. Douglas fir shapes its abiotic environment similarly to native tree species such as Norway spruce, silver fir or European beech. In general, many organisms have been shown to be able to live together with Douglas fir and in some cases even benefit from its presence. Although the number of species of the ground vegetation and that of arthropod communities is similar to those of native conifer species, fungal diversity is reduced by Douglas fir. Special microclimatic conditions in the crown of Douglas fir can lead to reduced arthropod densities during winter with possible negative consequences for birds. The ecological impacts of Douglas fir are in general not as severe as those of other exotic tree species, e.g., Pinus spp. in South Africa and Ailanthus altissima, Prunus serotina and Robinia pseudoacacia in Europe. Nonetheless, Douglas fir can negatively impact single groups of organisms or species and is now regenerating itself naturally in Europe. Although Douglas fir has not been the subject of large-scale outbreaks of pests in Europe so far, the further introduction of exotic organisms associated with Douglas fir in its native range could be more problematic than the introduction of Douglas fir itself

    Forest Health in a Changing World

    No full text
    Forest pathology, the science of forest health and tree diseases, is operating in a rapidly developing environment. Most importantly, global trade and climate change are increasing the threat to forest ecosystems posed by new diseases. Various studies relevant to forest pathology in a changing world are accumulating, thus making it necessary to provide an update of recent literature. In this contribution, we summarize research at the interface between forest pathology and landscape ecology, biogeography, global change science and research on tree endophytes. Regional outbreaks of tree diseases are requiring interdisciplinary collaboration, e.g. between forest pathologists and landscape ecologists. When tree pathogens are widely distributed, the factors determining their broad-scale distribution can be studied using a biogeographic approach. Global change, the combination of climate and land use change, increased pollution, trade and urbanization, as well as invasive species, will influence the effects of forest disturbances such as wildfires, droughts, storms, diseases and insect outbreaks, thus affecting the health and resilience of forest ecosystems worldwide. Tree endophytes can contribute to biological control of infectious diseases, enhance tolerance to environmental stress or behave as opportunistic weak pathogens potentially competing with more harmful ones. New molecular techniques are available for studying the complete tree endobiome under the influence of global change stressors from the landscape to the intercontinental level. Given that exotic tree diseases have both ecologic and economic consequences, we call for increased interdisciplinary collaboration in the coming decades between forest pathologists and researchers studying endophytes with tree geneticists, evolutionary and landscape ecologists, biogeographers, conservation biologists and global change scientists and outline interdisciplinary research gaps.ISSN:1432-184XISSN:0095-362

    Ecological consequences of Douglas fir (Pseudotsuga menziesii) cultivation in Europe

    No full text
    Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) was first introduced to Europe from North America more than 150 years ago, was then planted on a large scale and is now the economically most important exotic tree species in European forests. This literature review summarizes the current knowledge on the effects of Douglas fir on soil chemistry, plants, arthropods and fungi. Douglas fir shapes its abiotic environment similarly to native tree species such as Norway spruce, silver fir or European beech. In general, many organisms have been shown to be able to live together with Douglas fir and in some cases even benefit from its presence. Although the number of species of the ground vegetation and that of arthropod communities is similar to those of native conifer species, fungal diversity is reduced by Douglas fir. Special microclimatic conditions in the crown of Douglas fir can lead to reduced arthropod densities during winter with possible negative consequences for birds. The ecological impacts of Douglas fir are in general not as severe as those of other exotic tree species, e.g., Pinus spp. in South Africa and Ailanthus altissima, Prunus serotina and Robinia pseudoacacia in Europe. Nonetheless, Douglas fir can negatively impact single groups of organisms or species and is now regenerating itself naturally in Europe. Although Douglas fir has not been the subject of large-scale outbreaks of pests in Europe so far, the further introduction of exotic organisms associated with Douglas fir in its native range could be more problematic than the introduction of Douglas fir itself.ISSN:1612-4677ISSN:1612-466

    Forest Health in a Changing World

    No full text
    Forest pathology, the science of forest health and tree diseases, is operating in a rapidly developing environment. Most importantly, global trade and climate change are increasing the threat to forest ecosystems posed by new diseases. Various studies relevant to forest pathology in a changing world are accumulating, thus making it necessary to provide an update of recent literature. In this contribution, we summarize research at the interface between forest pathology and landscape ecology, biogeography, global change science and research on tree endophytes. Regional outbreaks of tree diseases are requiring interdisciplinary collaboration, e.g. between forest pathologists and landscape ecologists. When tree pathogens are widely distributed, the factors determining their broad-scale distribution can be studied using a biogeographic approach. Global change, the combination of climate and land use change, increased pollution, trade and urbanization, as well as invasive species, will influence the effects of forest disturbances such as wildfires, droughts, storms, diseases and insect outbreaks, thus affecting the health and resilience of forest ecosystems worldwide. Tree endophytes can contribute to biological control of infectious diseases, enhance tolerance to environmental stress or behave as opportunistic weak pathogens potentially competing with more harmful ones. New molecular techniques are available for studying the complete tree endobiome under the influence of global change stressors from the landscape to the intercontinental level. Given that exotic tree diseases have both ecologic and economic consequences, we call for increased interdisciplinary collaboration in the coming decades between forest pathologists and researchers studying endophytes with tree geneticists, evolutionary and landscape ecologists, biogeographers, conservation biologists and global change scientists and outline interdisciplinary research gaps

    Virulence of Hymenoscyphus albidus and H. fraxineus on Fraxinus excelsior and F. pennsylvanica

    No full text
    European ash (Fraxinus excelsior) is currently battling an onslaught of ash dieback, a disease emerging in the greater part of its native area, brought about by the introduction of the ascomycete Hymenoscyphus fraxineus (= Hymenoscyphus pseudoalbidus). The closely-related fungus Hymenoscyphus albidus, which is indigenous to Europe, is non-pathogenic when in contact with F. excelsior, but could pose a potential risk to exotic Fraxinus species. The North American green ash (Fraxinus pennsylvanica) is planted widely throughout Europe and regenerates naturally within this environment but little is known about the susceptibility of this species to ash dieback. We performed wound inoculations with both fungi (nine strains of H. fraxineus and three strains of H. albidus) on rachises and stems of F. excelsior and F. pennsylvanica under field conditions in Southern Poland. Necrosis formation was evaluated after two months on the rachises and after 12 months on the stems. After inoculation of H. albidus, only small lesions (of up to 1.3 cm in length) developed on the F. excelsior and F. pennsylvanica rachises, but with no significant distinction from the controls. Hymenoscyphus albidus did not cause necrotic lesions on the stems of either Fraxinus species. In contrast, H. fraxineus induced necroses on all inoculated rachises of both ash species with mean lengths of 8.4 cm (F. excelsior) and 1.9 cm (F. pennsylvanica). Necroses also developed on all of the inoculated F. excelsior stems (mean length 18.0 cm), whereas on F. pennsylvanica such lesions only occurred on about 5% of the stems (mean length 1.9 cm). The differences between strains were negligible. No necroses were observed on the control plants. Reisolations of H. albidus were only successful in around 8–11% of the cases, while H. fraxineus was reisolated from 50–70% of the inoculated organs showing necrotic lesions. None of the Hymenoscyphus species were isolated from the control plants. Our data confirm H. fraxineus’ high virulence with regards to F. excelsior and demonstrate a low virulence in relation to F. pennsylvanica under field conditions in Poland. Hymenoscyphus albidus did not express any perceivable pathogenicity on both host species.ISSN:1932-620

    The complete life cycle of Petrakia echinata

    No full text
    ISSN:1617-416XISSN:1861-895
    corecore