18 research outputs found

    Optomechanical cooling in a continuous system

    Full text link
    Radiation-pressure-induced optomechanical coupling permits exquisite control of micro- and mesoscopic mechanical oscillators. This ability to manipulate and even damp mechanical motion with light---a process known as dynamical backaction cooling---has become the basis for a range of novel phenomena within the burgeoning field of cavity optomechanics, spanning from dissipation engineering to quantum state preparation. As this field moves toward more complex systems and dynamics, there has been growing interest in the prospect of cooling traveling-wave phonons in continuous optomechanical waveguides. Here, we demonstrate optomechanical cooling in a continuous system for the first time. By leveraging the dispersive symmetry breaking produced by inter-modal Brillouin scattering, we achieve continuous mode optomechanical cooling in an extended 2.3-cm silicon waveguide, reducing the temperature of a band of traveling-wave phonons by more than 30 K from room temperature. This work reveals that optomechanical cooling is possible in macroscopic linear waveguide systems without an optical cavity or discrete acoustic modes. Moreover, through an intriguing type of wavevector-resolved phonon spectroscopy, we show that this system permits optomechanical control over continuously accessible groups of phonons and produces a new form of nonreciprocal reservoir engineering. Beyond this study, this work represents a first step towards a range of novel classical and quantum traveling-wave operations in continuous optomechanical systems.Comment: Manuscript with supplementary information. 17 pages, 4 Figures. Minor correction in Fig.

    Fundamental noise dynamics in cascaded-order Brillouin lasers

    Full text link
    The dynamics of cascaded-order Brillouin lasers make them ideal for applications such as rotation sensing, highly coherent optical communications, and low-noise microwave signal synthesis. Remark- ably, when implemented at the chip-scale, recent experimental studies have revealed that Brillouin lasers can operate in the fundamental linewidth regime where optomechanical and quantum noise sources dominate. To explore new opportunities for enhanced performance, we formulate a simple model to describe the physics of cascaded Brillouin lasers based on the coupled mode dynamics governed by electrostriction and the fluctuation-dissipation theorem. From this model, we obtain analytical formulas describing the steady state power evolution and accompanying noise properties, including expressions for phase noise, relative intensity noise and power spectra for beat notes of cascaded laser orders. Our analysis reveals that cascading modifies the dynamics of intermediate laser orders, yielding noise properties that differ from single-mode Brillouin lasers. These modifications lead to a Stokes order linewidth dependency on the coupled order dynamics and a broader linewidth than that predicted with previous single order theories. We also derive a simple analytical expression for the higher order beat notes that enables calculation of the Stokes linewidth based on only the relative measured powers between orders instead of absolute parameters, yielding a method to measure cascaded order linewidth as well as a prediction for sub-Hz operation. We validate our results using stochastic numerical simulations of the cascaded laser dynamics.Comment: 18 pages, 9 figure
    corecore