145 research outputs found

    Go Green: The Anti-Inflammatory Effects of Biliverdin Reductase

    Get PDF
    Biliverdin (BV) has emerged as a cytoprotective and important anti-inflammatory molecule. Conversion of BV to bilirubin (BR) is catalyzed by biliverdin reductase (BVR) and is required for the downstream signaling and nuclear localization of BVR. Recent data by others and us make clear that BVR is a critical regulator of innate immune responses resulting from acute insult and injury and moreover, that a lack of BVR results in an enhanced proinflammatory phenotype. In macrophages, BVR is regulated by its substrate BV which leads to activation of the PI3K–Akt-IL-10 axis and inhibition of TLR4 expression via direct binding of BVR to the TLR4 promoter. In this review, we will summarize recent findings on the role of BVR and the bile pigments in inflammation in context with its activity as an enzyme, receptor, and transcriptional regulator

    Inhaled Carbon Monoxide Provides Cerebral Cytoprotection in Pigs

    Get PDF
    Carbon monoxide (CO) at low concentrations imparts protective effects in numerous preclinical small animal models of brain injury. Evidence of protection in large animal models of cerebral injury, however, has not been tested. Neurologic deficits following open heart surgery are likely related in part to ischemia reperfusion injury that occurs during cardiopulmonary bypass surgery. Using a model of deep hypothermic circulatory arrest (DHCA) in piglets, we evaluated the effects of CO to reduce cerebral injury. DHCA and cardiopulmonary bypass (CPB) induced significant alterations in metabolic demands, including a decrease in the oxygen/glucose index (OGI), an increase in lactate/glucose index (LGI) and a rise in cerebral blood pressure that ultimately resulted in increased cell death in the neocortex and hippocampus that was completely abrogated in piglets preconditioned with a low, safe dose of CO. Moreover CO-treated animals maintained normal, pre-CPB OGI and LGI and corresponding cerebral sinus pressures with no change in systemic hemodynamics or metabolic intermediates. Collectively, our data demonstrate that inhaled CO may be beneficial in preventing cerebral injury resulting from DHCA and offer important therapeutic options in newborns undergoing DHCA for open heart surgery

    Induction of Protective Genes Leads to Islet Survival and Function

    Get PDF
    Islet transplantation is the most valid approach to the treatment of type 1 diabetes. However, the function of transplanted islets is often compromised since a large number of β cells undergo apoptosis induced by stress and the immune rejection response elicited by the recipient after transplantation. Conventional treatment for islet transplantation is to administer immunosuppressive drugs to the recipient to suppress the immune rejection response mounted against transplanted islets. Induction of protective genes in the recipient (e.g., heme oxygenase-1 (HO-1), A20/tumor necrosis factor alpha inducible protein3 (tnfaip3), biliverdin reductase (BVR), Bcl2, and others) or administration of one or more of the products of HO-1 to the donor, the islets themselves, and/or the recipient offers an alternative or synergistic approach to improve islet graft survival and function. In this perspective, we summarize studies describing the protective effects of these genes on islet survival and function in rodent allogeneic and xenogeneic transplantation models and the prevention of onset of diabetes, with emphasis on HO-1, A20, and BVR. Such approaches are also appealing to islet autotransplantation in patients with chronic pancreatitis after total pancreatectomy, a procedure that currently only leads to 1/3 of transplanted patients being diabetes-free

    Carbon Monoxide Protects against Liver Failure through Nitric Oxide–induced Heme Oxygenase 1

    Get PDF
    Carbon monoxide (CO) and nitric oxide (NO) each have mechanistically unique roles in various inflammatory disorders. Although it is known that CO can induce production of NO and that NO can induce expression of the cytoprotective enzyme heme oxygenase 1 (HO-1), there is no information whether the protective effect of CO ever requires NO production or whether either gas must induce expression of HO-1 to exert its functional effects. Using in vitro and in vivo models of tumor necrosis factor α–induced hepatocyte cell death in mice, we find that activation of nuclear factor κB and increased expression of inducible NO are required for the protective effects of CO, whereas the protective effects of NO require up-regulation of HO-1 expression. When protection from cell death is initiated by CO, NO production and HO-1 activity are each required for the protective effect showing for the first time an essential synergy between these two molecules in tandem providing potent cytoprotection
    corecore