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PHYSIOLOGY OF CARBON MONOXIDE
The longstanding perception of the gas
carbon monoxide (CO) as an odorless and
colorless “silent killer” began to attract the
attention of the public with the arrival
of the industrial age in the beginning
of the twentieth century (Douglas et al.,
1912). In fact, carbon monoxide has been
present in all societies since the discov-
ery of fire, yet it was John Haldane in
the early part of the twentieth century
that declared CO a lethal poison based
on his investigations of mine disasters.
American Indians knew that in addition to
warmth, gathering around a fire brought
calming and tranquil effects, something
we now attribute to neuroactive properties
of the gas. Poisonings from exhaust cer-
tainly continue to pose significant prob-
lems, as it did in the coal mine explo-
sions, but it remains unclear why the >500
other molecules that emerge from com-
bustion, many of which are carcinogens,
are largely ignored, yet pose just as great
a risk as CO. It was not until the late 1960’s
that endogenous production of CO was
discovered as a result of the catabolism
of heme (Sjostrand, 1949; Coburn et al.,
1963), suggesting a physiological role for
this simple, diatomic gas. Decades after
these findings were reported, investigators
noted that levels of CO were significantly
elevated in the exhaled breath of hospi-
talized patients (Vos et al., 2009; Cheng
et al., 2010; James et al., 2010; Zhang et al.,
2010). The illnesses were wide-ranging,
yet it was clear that CO levels would
decrease as the pathology resolved. How
then can it be explained that CO is toxic
if the body generates it physiologically
and even more puzzling, generates more

when in a compromised state? The answer
may lie in the ancient organelle known as
the mitochondria, an evolutionary endo-
symbiont originating from proteobacteria
whose singular responsibility is to generate
energy for the cell. It relies principally on
the presence of gases in the elegant transfer
of electrons among the oxidases contained
within its membranes.

The targets for CO are ostensibly clear.
CO binds rapidly and with high affin-
ity to heme-containing proteins such as
hemoglobin, the mitochondria oxidases or
the enzymes necessary for reactive oxy-
gen species generation. CO competes with
oxygen transport and cellular respiration
and it is perhaps in this primitive sym-
biotic organelle, among the numerous
hemoprotein complexes competing with
the other bioactive gases including nitric
oxide, oxygen, hydrogen sulfide and car-
bon dioxide that CO integrates itself and
impacts cellular physiology. The body of
evidence supporting a physiological role
for CO is immense and continues to
move forward as CO is being evaluated in
ongoing clinical trials (www.clinicaltrials.
gov, Identifier: NCT 01727167, 00094406,
00122694, 01214187, 01050712, 01050933,
01523548, and 00531856).

The endogenous generation of CO
as described by Tenhunen et al. (1968)
occurs through the enzymatic degra-
dation of heme by the heme oxyge-
nases, enzymes present in all cells that
convert heme into biliverdin, iron and
CO. Like CO, it has become undeni-
ably clear that each catalytic product has
important physiological functions beyond
serving as byproducts. Two isoforms of
heme oxygenase exist: heme oxygenase

1 (Hmox-1), which is expressed ubiq-
uitously and is highly inducible by an
array of stimuli, and the constitutive heme
oxygenase-2 (Hmox-2) isoform, predom-
inantly expressed in neurons, the testes,
and the vasculature. Induction of HO-
1 has proven to be a strong cytoprotec-
tant while deficiency in HO-1 leads to
aggravated disease states, even in humans
(Poss and Tonegawa, 1997; Otterbein et al.,
1999; Park et al., 2007; Tsuchihashi et al.,
2007; Chen et al., 2009; Wang et al., 2009,
2012; Yin et al., 2010; Ferenbach et al.,
2011; Ogawa et al., 2011; Zhang et al.,
2012).

CO AS A THERAPEUTIC AGENT
There is compelling pre-clinical data prov-
ing the salutary effects of exogenous CO
application. (Motterlini and Otterbein,
2010) CO has been shown to regulate
immune responses (Freitas et al., 2006),
cell survival (Song et al., 2003) and regen-
eration (Lin et al., 2009; Lakkisto et al.,
2010) as well as proliferation (Wegiel et al.,
2013). CO is homeodynamic in that it
serves the need of the tissue. There are
reports that it is both anti- and pro-
inflammatory (Lee et al., 2007; Beckman
et al., 2009), pro- and anti-apoptotic (Song
et al., 2004; Vieira et al., 2008) and pro-
and anti-proliferative (Otterbein et al.,
2003; Kuramitsu et al., 2011). One of the
primary sites in the body where CO is
believed to be most toxic is the brain
and this is based on weak studies with
lack of rigor and proper controls. CO
is clearly neuroprotective in various neu-
ronal injury models (Vieira et al., 2008;
Zeynalov and Dore, 2009; Wang et al.,
2011; Yabluchanskiy et al., 2012; Schallner
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et al., 2013) and extensive safety trials
in humans have been completed with-
out a single sign of toxicity at carboxyhe-
moglobin levels of 12–15% (Mayr et al.,
2005; Bathoorn et al., 2007). Most impor-
tantly, no negative influence on cogni-
tive function was detected. Collectively,
the clinical testing is safe with quan-
titative delivery of inhaled CO relative
to body weight and independent of the
respiratory rate has also been developed
(Motterlini and Otterbein, 2010). The
challenges of establishing CO as a gaseous
pharmaceutical triggered an onslaught of
research surrounding alternative routes
of CO application. Carbon Monoxide
Releasing Molecules (CO-RMs) emerged
in 2002 pioneered by Roberto Motterlini
(Motterlini et al., 2002). CO-saturated
pegylated hemoglobins have emerged that
also modulate inflammation and vaso-
occlusion in murine models of sickle cell
anemia (Belcher et al., 2013). These CO
carriers, or pro-drugs, release CO follow-
ing well-defined kinetics and have been
characterized to deliver CO to target tis-
sues in several in vitro(Clark et al., 2003;
Motterlini et al., 2005; Bani-Hani et al.,
2006; Megias et al., 2007; Urquhart et al.,
2007) and in vivo (Tayem et al., 2006;
De Backer et al., 2009; Tsoyi et al., 2009;
Vadori et al., 2009) studies, exerting bio-
logical effects much like inhaled gas (Bani-
Hani et al., 2006; Yabluchanskiy et al.,
2012).

CO AND THE MITOCHONDRIA
Despite profound pre-clinical evidence of
efficacy, the molecular mechanisms by
which CO exerts its protective effects in
a diverse array of animal models remains
poorly characterized with numerous and
confounding molecular targets described
(Motterlini and Otterbein, 2010). The high
affinity for heme makes any cellular heme-
containing protein a potential target for
CO, including soluble guanylate cyclase
(sGC) (Verma et al., 1993; Schallner et al.,
2013), NO-synthase (Zuckerbraun et al.,
2003; Marazioti et al., 2011), NADPH
oxidase (Taille et al., 2005) and NPAS-2
(Dioum et al., 2002) among a multitude
of others. While a unifying signature is
lacking, the single-most implicated target
is the mitochondria. This seems paradox-
ical at first sight since inhibition of mito-
chondrial respiration via CO binding to

components of the mitochondrial electron
transfer chain, has been looked at as being
responsible for the toxicity seen after CO
poisoning. Against this dogma, however,
CO exposure clearly influences cellular
bioenergetics in the context of salu-
tary effects, paradoxically increasing O2

bioavailability and consumption, which in
turn reduces injury-related organ dam-
age (Tsui et al., 2007; Lancel et al., 2009).
CO increases mitochondrial generation of
reactive oxygen species (Chin et al., 2007;
Zuckerbraun et al., 2007) and mitochon-
drial biogenesis, (Suliman et al., 2007;
Piantadosi et al., 2008) which likely go
hand-in-hand to influence the vast array
of cellular downstream targets that have
been linked to the beneficial effects of
CO (Motterlini and Otterbein, 2010). We
speculate that CO alters oxygen sensing
and exerts a “pseudo-hypoxic” state, pro-
viding a powerful cellular impact toward
re-generation and increasing the cellular
energy supply that leads to improved sur-
vival in the presence of cell stress and
injury.

CONCLUSIONS AND PERSPECTIVE
The name mitochondria originated from
the Greek “mitos” meaning thread and
“chondros” meaning granule, which
referred to their structural appearance.
They were first called “bioblasts” which
is perhaps a more accurate designation
giving the impression of explosive behav-
ior while generating critical energy for
the cell. Mitochondria are comprised
of lipid bilayers and proteins like other
cellular compartments including the
Golgi, endoplasmic reticulum and the
nucleus. The mitochondria rely to a large
extent on the interrelationships among
the gases, primarily O2 and CO2. These
gases serve as the fundamental molecules
involved in the energy-transduction sys-
tem that ultimately results in generation
of life-sustaining ATP. It has become
clear, however that O2 and CO2 are not
alone in dictating cellular physiologic
and pathophysiologic responses. Much
like the complexities of signal trans-
duction, gene regulation and metabolic
pathways, the cellular gases CO and its
sister gases NO and H2S are critically
integrated into the function of mitochon-
dria and therein the overall health of the
organism.
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