23 research outputs found

    Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adenoviral vectors have provided effective methods for <it>in vivo </it>gene delivery in therapeutic applications. However, these vectors can induce immune responses that may severely affect the ability of vector re-application. There is limited information about the mechanisms and signal transduction pathways involved in adenoviral recognition. For optimization of cutaneous gene therapy it is necessary to investigate molecular mechanisms of virus recognition in epidermal cells. The aim of this study was to investigate the signal transduction of the innate immunity after adenoviral DNA internalization in keratinocytes.</p> <p>Methods</p> <p><it>In vitro</it>, keratinocytes were transfected with DNA, in the presence and absence of inhibitors for signalling molecules. <it>In vivo</it>, immunocompetent and athymic mice (n = 3 per group) were twice transduced with an Ad-vector.</p> <p>Results</p> <p>The results show an acute induction of type-I-interferon after <it>in vitro </it>transfection. Inhibition of PI3K, p38 MAPK, JNK and NFkappaB resulted in a decreased expression of type-I-interferon. In contrast to immunocompetent mice, athymic mice demonstrated a constant transgene expression and reduced inflammatory response <it>in vivo</it>.</p> <p>Conclusion</p> <p>The results suggest an induction of the innate immunity triggered by cytoplasm localised DNA which is mediated by PI3K-, p38 MAPK-, JNK-, NFkappaB-, JAK/STAT- and ERK1/2-dependent pathways. A stable transgene expression and a reduced inflammatory response in immunodeficient mice have been observed. These results provide potential for an effective adenoviral gene delivery into immunosupressed skin.</p

    The Use of a Stringent Selection System Allows the Identification of DNA Elements that Augment Gene Expression

    Get PDF
    The use of high stringency selection systems often results in the induction of very few recombinant mammalian cell lines, which limits the ability to isolate a cell line with favorable characteristics. The employment of for instance STAR elements in DNA constructs elevates the induced number of colonies and also the protein expression levels in these colonies. Here, we describe a method to systematically identify genomic DNA elements that are able to induce many stably transfected mammalian cell lines. We isolated genomic DNA fragments upstream from the human Rb1 and p73 gene loci and cloned them around an expression cassette that contains a very stringent selection marker. Due to the stringency of the selection marker, hardly any colony survives without flanking DNA elements. We tested fourteen ~3500 bp DNA stretches from the Rb1 and p73 loci. Only two ~3500 bp long DNA fragments, called Rb1E and Rb1F, induced many colonies in the context of the stringent selection system and these colonies displayed high protein expression levels. Functional analysis showed that the Rb1 DNA fragments contained no enhancer, promoter, or STAR activity. Our data show the potential of a methodology to identify novel gene expression augmenting DNA elements in an unbiased manner

    SARS-CoV-2 Transmissibility Within Day Care Centers—Study Protocol of a Prospective Analysis of Outbreaks in Germany

    Get PDF
    Introduction: Until today, the role of children in the transmission dynamics of SARS-CoV-2 and the development of the COVID-19 pandemic seems to be dynamic and is not finally resolved. The primary aim of this study is to investigate the transmission dynamics of SARS-CoV-2 in child day care centers and connected households as well as transmission-related indicators and clinical symptoms among children and adults. Methods and Analysis: COALA (“Corona outbreak-related examinations in day care centers”) is a day care center- and household-based study with a case-ascertained study design. Based on day care centers with at least one reported case of SARS-CoV-2, we include one- to six-year-old children and staff of the affected group in the day care center as well as their respective households. We visit each child's and adult's household. During the home visit we take from each household member a combined mouth and nose swab as well as a saliva sample for analysis of SARS-CoV-2-RNA by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) and a capillary blood sample for a retrospective assessment of an earlier SARS-CoV-2 infection. Furthermore, information on health status, socio-demographics and COVID-19 protective measures are collected via a short telephone interview in the subsequent days. In the following 12 days, household members (or parents for their children) self-collect the same respiratory samples as described above every 3 days and a stool sample for children once. COVID-19 symptoms are documented daily in a symptom diary. Approximately 35 days after testing the index case, every participant who tested positive for SARS-CoV-2 during the study is re-visited at home for another capillary blood sample and a standardized interview. The analysis includes secondary attack rates, by age of primary case, both in the day care center and in households, as well as viral shedding dynamics, including the beginning of shedding relative to symptom onset and viral clearance. Discussion: The results contribute to a better understanding of the epidemiological and virological transmission-related indicators of SARS-CoV-2 among young children, as compared to adults and the interplay between day care and households.Peer Reviewe

    Role of Antimicrobial Peptides in Inflammatory Bowel Disease

    No full text
    Inflammatory bowel diseases (IBD) are characterized by a chronic relapsing inflammation of the gastrointestinal mucosa. The etiology and pathogenesis of these disorders such as Crohn’s disease and ulcerative colitis are incompletely understood. Recently, antimicrobial peptides, which are expressed by leukocytes and epithelia, have been implicated in the pathogenesis of IBD. Antimicrobial peptides are pivotal for intestinal defense, shaping the composition of the luminal flora and contributing thereby to the maintenance of intestinal homeostasis. Apart from their antimicrobial activity affecting commensal bacteria, immunomodulatory properties of antimicrobial peptides have been identified, which link innate and adaptive immune response. There is increasing evidence that alterations in mucosal levels of these peptides contribute to IBD pathogenensis
    corecore