53 research outputs found
Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states
Using spatial modes for quantum key distribution (QKD) has become highly
topical due to their infinite dimensionality, promising high information
capacity per photon. However, spatial distortions reduce the feasible secret
key rates and compromise the security of a quantum channel. In an extreme form
such a distortion might be a physical obstacle, impeding line-of-sight for
free-space channels. Here, by controlling the radial degree of freedom of a
photon's spatial mode, we are able to demonstrate hybrid high-dimensional QKD
through obstacles with self-reconstructing single photons. We construct
high-dimensional mutually unbiased bases using spin-orbit hybrid states that
are radially modulated with a non-diffracting Bessel-Gaussian (BG) profile, and
show secure transmission through partially obstructed quantum links. Using a
prepare-measure protocol we report higher quantum state self-reconstruction and
information retention for the non-diffracting BG modes as compared to
Laguerre-Gaussian modes, obtaining a quantum bit error rate (QBER) that is up
to 3 times lower. This work highlights the importance of controlling the radial
mode of single photons in quantum information processing and communication as
well as the advantages of QKD with hybrid states.Comment: Published version, 15 pages, 6 figures, 2 table
Entanglement beating in free space through spin–orbit coupling
It is well known that the entanglement of a quantum state is invariant under local unitary transformations. This rule dictates, for example, that the entanglement of internal degrees of freedom of a photon remains invariant during free-space propagation. Here, we outline a scenario in which this paradigm does not hold. Using local Bell states engineered from classical vector vortex beams with non-separable degrees of freedom, the so-called classically entangled states, we demonstrate that the entanglement evolves during propagation, oscillating between maximally entangled (purely vector) and product states (purely scalar). We outline the spin–orbit interaction behind these novel propagation dynamics and confirm the results experimentally, demonstrating spin–orbit coupling in paraxial beams. This demonstration highlights a hitherto unnoticed property of classical entanglement and simultaneously offers a device for the on-demand delivery of vector states to targets, for example, for dynamic laser materials processing, switchable resolution within stimulated emission depletion (STED) systems, and a tractor beam for entanglement
Tunable vector beam decoder by inverse design for high-dimensional quantum key distribution with 3D polarized spatial modes
Spatial modes of light have become highly attractive to increase the
dimension and, thereby, security and information capacity in quantum key
distribution (QKD). So far, only transverse electric field components have been
considered, while longitudinal polarization components have remained neglected.
Here, we present an approach to include all three spatial dimensions of
electric field oscillation in QKD by implementing our tunable, on-a-chip vector
beam decoder (VBD). This inversely designed device pioneers the "preparation"
and "measurement" of three-dimensionally polarized mutually unbiased basis
states for high-dimensional (HD) QKD and paves the way for the integration of
HD QKD with spatial modes in multifunctional on-a-chip photonics platforms.Comment: 10 pages, 3 figure
All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe
The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe class
mission concept that will provide essential contributions to multimessenger
astrophysics in the late 2020s and beyond. AMEGO combines high sensitivity in
the 200 keV to 10 GeV energy range with a wide field of view, good spectral
resolution, and polarization sensitivity. Therefore, AMEGO is key in the study
of multimessenger astrophysical objects that have unique signatures in the
gamma-ray regime, such as neutron star mergers, supernovae, and flaring active
galactic nuclei. The order-of-magnitude improvement compared to previous MeV
missions also enables discoveries of a wide range of phenomena whose energy
output peaks in the relatively unexplored medium-energy gamma-ray band
- …
