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Due to their topological stability and spatial confinement, particle-like field configurations have gained significant
interest in many areas of physics. Only recently, the first skyrmionic hopfion was proposed in light, but its higher-order
analog in optics has stayed a theoretical construct so far, and direct experimental observations also prove difficult in
non-optical systems. Here we overcome this challenge by the experimental realization and analysis of a second-order
skyrmionic hopfion in the polarization and phase texture of a paraxial light field in three-dimensional space. Thereby,
we exemplify advanced control of observed parameters in a localized space, pioneering further experimental studies on
higher-order hopfions in optics and beyond.
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1. INTRODUCTION

The spatial customization of light in its different degrees of
freedom, such as amplitude, phase, and/or polarization, has
proven to be an impactful tool in various research areas (see [1–3]
and references therein): it enables complex optical micro- and
nano-manipulation, advances material machining down to the
nanoscale, facilitates novel approaches for classical as well as quan-
tum communication, or can serve as a model to study scientific
problems in non-optical systems [4–7]. In recent years, the overlap
of this field of research, i.e., structured light, with the area of topol-
ogy, has attracted increasing interest due to the huge potential of
implementing topologically protected, stable spatial constructs of
light in the above named applications.

In this context, singular optics gives special attention to points
and lines of undefined phase (phase singularities) in phase vortex
structures or of undefined properties of polarization states, namely,
polarization singularities in spatial polarization structures [8–10].
These singularities are of topological nature themselves while
building the “skeleton” of the structured light field surrounding
it in three-dimensional (3D) space. Besides being of fundamental
interest, these singular light fields with integer singularity indices
have found different applications, e.g., as information carriers in
optical communication [11]. Also, it has been shown that these
singularities in phase and polarization [12–14] as well as other
1D optical structures such as light filaments [15] can actually be
plaited into mathematical knots. Such findings have opened the

door to studying complex topological constructs in light, whereby,
recently, even particle-like 2D and 3D topologies such as optical
skyrmions and (skyrmionic) hopfions have become accessible. The
investigation of these optical constructs is still in its infancy with its
best future applications still to be identified.

Skyrmions originate from a potential description for atomic
nuclei [16,17], representing a field configuration that can arise in
2D (“baby skyrmion”) or even 3D systems [18]. They are topo-
logical maps from n-dimensional (nD) space to the nD sphere.
They currently are of high interest in, e.g., condensed matter
physics, where 2D magnetic skyrmions are proposed for efficient
non-volatile memory units [19,20] due to the stability provided by
the topological structure. In analogy to the spin structure of these
magnetic skyrmions, similar 2D structures in light fields—optical
baby skyrmions—have been realized [21–25]. These structures are
generally characterized by an integer invariant; if a baby skyrmion
carries an invariant with its absolute >1, it is referred to be of
“higher order.” These higher-order baby skyrmions have been pro-
posed in both magnetic [26–29] and optical systems [24,25,30].
To facilitate full 3D skyrmions, one needs to achieve a mapping
from a 4D sphere to 3D space. This can be done by choosing a
special parametrization of the 4D sphere, the hopf fibration, which
is defined by a map from the 4D sphere to a 3D sphere. Projections
of this parametrization into 3D space are called hopfions, which
are self-contained, localized structures in real space and therefore
particle-like in nature, just like skyrmions.
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Hopfions have been theoretically predicted and experimentally
verified in various systems, including high-energy physics [31–33],
electro (-magnetic) field lines [34–38] with an interesting analogy
between electromagnetic and gravitational hopfions [39], liquid
crystals [40], a fluid of magnetic nanoplates [41], atom layers [42],
and the polarization [43] or the polarization as well as phase texture
of structured light [44]. If all four parameters of the 4D sphere
have a physical meaning in 3D space, the hopfion is actually the
projection of the entire 4D sphere, making it also a 3D skyrmion
and thus the name “skyrmionic hopfion.” Therefore, it combines
two topological aspects, namely, the properties of a 3D skyrmion as
well as a hopfion. Similar to baby skyrmions, one can define a topo-
logical invariant for the skyrmionic hopfion and could construct
higher-order versions of it. In the case of the optical skyrmionic
hopfion, this parametrization is the combination of phase and the
three Stokes parameters S1,2,3 that span the Poincaré sphere and
characterize the polarization of the light field [44].

Up to now, research has mainly focused on 2D skyrmion con-
figurations and theoretical descriptions of hopfions—in optics as
well as in other fields of physics. Especially the experimental gener-
ation and analysis of 3D topological structures remains a challenge
in many research fields. In this work, we extend rarely existing
experimental realizations of these topological structures by provid-
ing the first experimental realization and analysis of a higher-order
skyrmionic hopfion in structured light. We exemplify these higher-
order constructs by presenting a second-order skyrmionic hopfion
formed by the polarization and phase texture in a paraxial field in
3D space. For this purpose, in the following, we first give a brief
overview on higher-order skyrmionic hopfions and how to embed
them in light (Section 2). Subsequently, we present the successful
experimental realization in the form of polarization fibration in 3D
space and the respective skyrme number (Section 3); our results
are discussed in Section 4. The presented results open the door to
further experimental investigation of different higher-order integer
invariants of confined particle-like light fields and thereby unlock
the potential of these fields for future applications such as data
storage and communication based on topological invariants.

2. HIGHER ORDERS OF THE SKYRMIONIC
HOPFION

A skyrmionic hopfion can be regarded in its two natures: a
skyrmionic nature, arising from covering of a unit-sphere in
4D space (denoted three-sphereS3), and its hopf nature, stemming
from linking of the projected fibers. Associated with each topologi-
cal aspect is an integer quantity: the skyrme number, counting the
extent of covering the three-sphere, and the hopf invariant, giving
the linking number of each of the fibers. For an optical hopfion,
the projected three-sphere, which we call optical hypersphere,
describes the full polarization state of paraxial light, similar to the
Poincaré sphere. The key difference is that the position on the
hypersphere also distinguishes between different phase values even
for equal polarization. The linked fibers are the set of points in
space with the same polarization, not distinguished with regard
to phase. Note that in our design of the skyrmionic hopfion these
two quantities are related, but are not necessarily so in general. Our
previous report [44] on the skyrmionic hopfion showed the basic
case with skyrme number 1. However, the same method, proposed
in [44] with additional details in [45], can be used to construct
fields expressing higher-order hopfions:

Consider the hopf map

h(u, v)= (2Re(u∗v), 2Im(u∗v), |u|2 − |v|2), (1)

with u, v ∈C and |u|2 + |v|2 = 1. It is easy to show that the right-
hand side of Eq. (1) is contained in the unit 2-sphere S2, i.e., the
set of points of unit distance in 3D space. This map h : S3

→ S2

defines the mathematical hopf fibration. Through the use of stere-
ographic projection, the total space that is the three-sphere, is
mapped into real 3D space. Additional confinement by, e.g., tan−1

results in the confinement of the structure within a limited space
and makes it applicable in light.

Now we can generalize this map by considering the map
h(um, vn) of integer powers of u and v. The target space is guar-
anteed to be S2 if |um

|
2
+ |vn

|
2
= 1. But the fibration, i.e., the

decomposition into preimages h−1, will change depending on
the indices m and n. S3 will be covered m · n times. The resulting
fibers will be, once stereographically projected into real space, in
the configurations of (m, n)-torus knots and links. Any two of the
fibers are then linked m · n times, equal to the covering of S3. The
fibers will be knotted only if the indices are co-prime. Otherwise,
a fiber will be separated into d components, where d is the greatest
common denominator of m and n. Therefore, the most basic
knotted hopfion, meaning a hopfion where individual fibers are
knots instead of an unknot, would have indices (3,2) or (2,3) with
a skyrme or linking number of 6. The linking of the polarization
fibers also needs some attention. It is possible to have multiple
polarization fibers of the same polarization state linked with each
other. For this, the simplest case is m = n = 2. Otherwise, for
every hopfion, polarization fibers of different polarization states
are always linked, the simplest case being the normal hopfion, as
represented in [44]. Higher orders need increasingly complex field
configurations. In the following, we will investigate the higher-
order case of m = 1, n = 2 with doubly linked (but not knotted)
polarization fibers as a case study of an optical higher-order
skyrmionic hopfion.

Identifying u and v in Eq. (1) with a right-handed circularly
polarized field ER and a left-handed circularly polarized field EL,
respectively, immediately gives the Stokes parameters as the target
space

h(ER, EL)= (2Re(E ∗R EL), 2Im(E ∗R EL),

|ER|
2
− |EL|

2)= (s 1, s 2, s 3), (2)

where the condition |u|2 + |v|2 = |ER|
2
+ |EL|

2
= 1 normalizes

the Stokes parameters (then denoted by capital Si ) and the target
space is the Poincaré sphere.

Stereographically projecting ER and E 2
L while setting z= 0 will

give us polynomials in r and e iϕ :

ER,2D = r 4
− 1,

EL,2D = e 2iϕ . (3)

In particular, the field will require a phase vortex on the propa-
gation axis and a closed phase vortex loop in the focal plane. The
polynomials will become physical by multiplying with a Gaussian
beam. The desired light field can then be expanded in terms of
Laguerre–Gaussian (LG) modes:
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LGl ,p(r , ϕ, z)=Cl ,p
w0

w(z)

(√
2r

w(z)

)|l |
L |l |p

(
2r 2

w2(z)

)
exp

(
−

r 2

w2(z)

)

× exp

(
i
(
−kr 2

2R(z)

)
− lϕ + (N + 1)χG

)
,

(4)

where l is the azimuthal mode number, p is the radial mode num-
ber, Cl ,p is a normalization factor,w(z) is the beam radius with the
beam waistw0 =w(0), L |l |p is an associated Laguerre polynomial,
k is the wavenumber, R(z) is the radius of the wavefront curvature,
and χG is the Gouy phase weighted with the combined mode
number N = 2p + |l |. We use LG modes because they form a
complete basis in the focal plane and are a natural choice for fields
with phase vortices and rotational symmetry. It is important to
note that the choice of embedding the polynomials in a Gaussian
beam means that the results are no longer exact but in an approxi-
mation. However, the structure is still transferred. All fibers of
equal ellipticity, i.e., same value for the normalized third Stokes
parameter S3, build a torus as well, but now wind twice around it in
poloidal direction. Interestingly, this approach shows similarities to
the method of Gao et al. [24]. Indeed, we expect a baby skyrmion
formation in the focal plane, as every polarization state has to pass
through that particular transverse plane. However, the evolution
along propagation will differ.

3. RESULTS

The expansion in LG modes and introduction of optimization
parameters gives a superposition of three modes for ER and a single
mode for EL:

ER = (−a + 2S4)LG0,0 − 4S4LG0,1 + 2S4LG0,2,

EL = LG2,0, (5)

where a ≥ 0 and S ≥ 1 are optimization parameters. The parame-
ters are introduced in this particular way because it proved helpful

in the experimental realization. The parameter S would scale
the structure down in the transverse dimension, while a would
control the relative intensity of ER on the axis. However, it is also
possible to use one parameter for each mode with higher p and
scale it relative to the ground mode with p = 0, while keeping the
phase relation intact. Both beams’ transverse intensities and phase
profiles, as well as the intensity and phase of ER along propagation,
are visualized in Fig. 1. Notably, the phase vortex loop in ER is
indicated by two oppositely charged phase vortices in the x − z
cut. Note that the choice of a positive charge l for the phase vortex
in EL will result in a negative skyrme number as well as linking
number. In this form, a , S, the beam waist w0 common to all
LG modes, and the intensity ratios of the two beams are param-
eters to be set for the generation of the hopfion structure, which
is especially important in the experiment. The most important
indication for a successful generation was a closed left-handed C
line loop around the focal plane. The measurement was made with
a = 1, S = 1.5,w0 = 88.5 µm, and a ratio of maximal intensities
IR,m/IL,m in the focal plane of approximately 6.5 in a cuboid of size
of 4.15w0 × 4.15w0 × 0.69zR, where zR = kw2

0/2= 46.3 mm
is the Rayleigh length, with k = 2π/λ the wavenumber and
λ= 532 nm the wavelength of the light. The z range of the cuboid
was scanned with 101 transverse planes.

The experimental results are obtained from the superposition of
two beams. The two required beams are structured separately on a
single spatial light modulator (SLM) using a split-screen approach,
then set to orthogonal circular polarization and superimposed on
the optical axis. The measurement of the Stokes parameters is based
on the combination of a quarter-wave plate (QWP) and a horizon-
tal polarizer in front of the camera. To be able to scan the light field
along the propagation direction, the SLM and the image plane of
the camera are set in a Fourier relation by an additional lens, and
digital propagation is employed to identify the different planes in
propagation direction. A correct reconstruction then requires to
display the Fourier transform of the modes on the SLM. A detailed
description of this method can be found in [44]. We extracted the

0

0

2

max

(b) (d)

(a) (c)

(f)

(e)

100 m

y
x

5mm

z
x

+

-

Fig. 1. Experimentally determined intensities and phases of the beams building the higher-order hopfion. Insets show the numerically determined
data for comparison. (a) Intensity and (b) phase of the left-handed circularly polarized beam in the focal plane. The strength 2 phase vortex near the center
(compare inset) is split into two strength 1 vortices, indicated by the circular arrows. (c), (d) Respective data for the right-handed circularly polarized beam.
The phase vortex ring (visible as a phase jump in the numerics) is tilted with regard to the focal plane, and two oppositely charged phase vortices appear. (e),
(f ) Intensity and phase in an x − z cut (z: propagation axis) along the beam center to highlight the longitudinal phase vortices, indicated by the circular
arrows; + and− indicate their orientations. Note that the pictures of intensity are scaled to their respective maximum. In the focal plane, the ratio IR,m/IL,m

of maximal intensity is approximately 6.5. The total sizes of the measured volume are approximately 367 µm in x and y directions and 63.8 mm in
z direction.
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phase from a polarization measurement by superimposing one
of the beams with a plane wave of orthogonal polarization. In the
case of a circular polarization basis for the constituent beams, the
complex Stokes field

612 = S1 + i S2 = 2AR AL exp (i (χL − χR)) , (6)

with A j being the amplitude and χ j being the phase of the respec-
tive right- or left-handed circularly polarized beam, will carry the
same phase structure as the measured beam [46], since the plane
wave introduces only a constant offset. Additionally, the intensities
of the individual beams are recorded to calculate the transverse
energy flow (see Section 2 in Supplement 1).

A. Polarization Structure

The experimentally determined polarization fibration is exem-
plified in Figs. 2(a)–2(d). Additional images with an alternative
visualization are also presented in Fig. S1 in Supplement 1. The
left-handed and linear polarization states close on themselves and
pass twice through every other filament. This is exemplarily visu-
alized in Fig. 2(c), where only three polarization fibres are drawn.
All polarization filaments wind in the same manner around the
left-handed C line and build tori of equal ellipticity S3. Thus, all
polarization states are linked twice. The z axis lets one define a
direction of rotation of the polarization filaments around the left-
handed C line. Following it in a counterclockwise direction, the
polarization filaments pass through the C line loop in a counter-
clockwise direction also. This sense of direction is defined by the
positive topological charge in EL.

The right-handed elliptical states do not fully close on them-
selves, meaning that the respective S3 surface is not closed at the
z planes within the measured volume. However, the filaments
generally behave according to the expectation shown in Fig. 2(e).

They all pass twice through the left-handed C line and retain the
correct sense of rotation around the left-handed C line, i.e., passing
through the center of the C line loop in a counterclockwise fashion.
Indeed, such splitting of polarization states is expected to occur
above a critical value of S3 even in the numerical simulations due
to the embedding in physical beams. Because of experimental
error, however, this value is drastically reduced in the experiment.
Nonetheless, most of the desired topology is still expressed in the
measured field.

The right-handed C line requires some additional attention. It
is determined by the phase vortex in EL. Because a vortex of charge
|l | = 2 is required for the construction of the second-order hopfion
and is unstable under perturbation [7], the phase vortex and there-
fore also the resulting C line are split into two singly charged lines.
This results in a region between the two C lines with high value of
S3, beginning around S3 = 0.8. Furthermore, it creates a strong
transverse two-fold rotational symmetry of the light field.

Since phase vortices with higher topological charges are
required for all higher-order hopfions—with exception for (m, 1)-
hopfions—this limits the full embedding of these constructs.
However, as shown previously, most of the structure is concen-
trated at lower values of S3, which are not as much disturbed by
the splitting of the C line; (m, 1)-hopfions do not require phase
vortices with higher order, but require a superposition of multiple
modes with singly charged phase vortices, which then can also split
in the experiment. In turn, the left-handed C line loop has a higher
charge, which will collapse under perturbation [47].

B. Skyrme Number

As discussed before, two numbers are associated with a skyrmionic
hopfion: the hopf invariant or linking number and the skyrme
number. For our higher-order hopfion, these values are expected

1

2

3

(a) (b) (c)

(d) (e) (f)

x
yz

x

y

Fig. 2. Polarization fibration of the second-order hopfion at different values of S3 in the (a)–(d) experiment and (e) simulation. The filaments are colored
according to their position on the (f ) Poincaré sphere, with the right- and left-handed C lines colored white and black, respectively. Note that, because the
right-handed C line would have a singularity index of 2, it is split into two C-lines of singularity index 1. (a) Left-handed elliptical polarization states with
S3 =−0.5; (b), (c) linear polarization states with S3 = 0; and right-handed elliptical polarization states with S3 = 0.5 in (d) experiment and (e) simulation.
(c) Vertical and horizontal polarization states as well as the left-handed C line from the top view.
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to equal two. Whereas ideally both are integer valued, this is not
the case due to the embedding in light fields satisfying the paraxial
Helmholtz equation. However, they are still informative quan-
tities. As seen in Fig. 2, most polarization filaments are linked
twice. The skyrme density, which integrated would give the skyrme
number, can be regarded as a local, continuous measure of link-
ing of the polarization filaments, whereas the hopf invariant is a
measure of the global topology.

The skyrme density 6 is related to the angles α, β, γ
parametrizing the optical hypersphere [44]

6 =
1

16π2
∇γ · (∇(cos β)×∇α) , (7)

where ∇ denotes differentiation with regard to space. As the
hypersphere distinguishes polarization and phase, the angles get
a physical meaning in describing a specific polarization and phase
state. −π < α = arctan(S1, S2)≤ π describes the polarization
azimuth, 0≤ β = arccos(S3)≤ π is the ellipticity, and −2π <
γ = χR + χL ≤ 2π is the sum of the phases of the two constituent
fields. In a further step, the skyrme density can also be expressed
with the orbital current J o = Im[E ∗R∇ER + E ∗L∇EL] =

IR∇χR + IL∇χL, where I j and χ j are, respectively, the spatially
varying intensity and phase of the respective beam:

6 =
1

4π2
J o · ∇ × J o. (8)

Note that the electric fields and therefore intensities are nor-
malized. This can be further simplified. Separating the optical
current into two terms associated with the constituent beams
J o := J o,R + J o,L gives the following terms:

6 =
1

4π2

[
J o,R · ∇ × J o,R + J o,R · ∇ × J o,L

+ J o,L · ∇ × J o,R + J o,L · ∇ × J o,L
]
. (9)

The terms associated with only one beam, i.e., J o,R · ∇ × J o,R

and J o,L · ∇ × J o,L, reduce to zero while the mixed terms remain.
This means that only if two orthogonally polarized beams are
superimposed in a volume can a covering of the optical hyper-
sphere be achieved. Further simplifying Eq. (9) gives a final form
for the skyrme density in terms of the intensities and phases of the
constituent beams:

6 =
1

4π2
[IR∇ IL − IL∇ IR] · [∇χL ×∇χR] . (10)

Equations (7) and (10) can both be used to calculate the skyrme
number. Both equations contain gradients that, in case of exper-
imental data, have to be calculated numerically and therefore
introduce errors based on the chosen method. Especially around
phase vortices, special care needs to be taken. Furthermore, as
already discussed in the Supplement 1 of [44], this method can
give values for the skyrme number larger than m · n. However,
it gives a good estimate on the skyrme number without the need
of a supercomputer. Values greater than the theoretical integer
value will appear only when choosing a large volume, where either
the hopfion field already unwinds in propagation direction or is
limited by low intensities in the transverse plane and therefore not
of experimental interest. Note that although a circular polarization
base was assumed in the above calculations, the skyrme density
should not be dependent on this choice. This is further indicated

by the orbital flow density (see Eq. S2 in Supplement 1), which is
identical to the orbital current J o apart from a scaling factor. The
total orbital flow is not dependent on the choice of the polarization
basis [48]—only a subdivision into partial flows is.

The calculated skyrme number for the experimental data is
−1.83 compared to−1.89 for a numeric model field with the same
parameters and the same volume. Compared to the theoretical
value of−2, it suggests that most of the polarization states, includ-
ing the varying phase, are present twice in the measured volume.
On the one hand, every polarization state is weighted equally
as any other, and, because the size of an S3-torus scales with its
value, left-handed elliptical states therefore have a higher absolute
density. Moreover, right-handed elliptical states also contribute
overall, since only a part of them is cut off and the remaining part
is in the correct configuration. On the other hand, this method
does not distinguish how the optical hypersphere is covered, and
some polarization states are overrepresented, which is the case near
the propagation axis, where the splitting of the C line introduces
additional polarization states.

4. CONCLUSION AND DISCUSSION

In this work, we have overcome the challenges that hinder research
on the experimental realization of higher-order skyrmionic
configurations. We were able to precisely adjust the unstable
higher-order singularities in the superimposed light field in such
a way that the optical skyrmionic hopfion forms in a confined
volume around the focal plane. We demonstrated the fibration by
examples of filaments of constant polarization with varying phase
along them. The filaments link twice with each other, giving rise to
a skyrme number of−1.83, calculated from the experimental data,
compared to the ideal value of−2.

A discussion of the structure’s stability is warranted. Typically,
skyrmions need non-linear terms to stabilize them [18]. These are
not present in free-space optics. Therefore, there is no reason to
assume that the configuration is truly stable. Indeed, the compari-
son between experiment and simulation shows that perturbation
unwinds the structure. However, a point for topological stability
can be made. Because of its particular configuration, the hopfion
can unwind only from its outer layers. In particular, it unwinds
by reconnecting with polarization states coming from ±∞ in
propagation direction. In that regard, the core of the structure is
topologically protected. New polarization states, i.e., states with
high values of S3 near the propagation axis, emerge in pairs that
should not change the skyrme number, as is suggested by the sim-
ilarity of the calculated numbers. States that change the skyrme
number should appear only near the edges of the volume in propa-
gation direction. A better control of the fields, especially away from
the focal plane, could therefore significantly improve the structure
in future steps.

Higher-order hopfions have been theoretically described for
high-energy physics [49,50] and magnetism [51], but the optical
analog may prove useful for the detailed study of the hopfion struc-
ture and easy access to modifications. Notably, our optical hopfion
is a solution static in time, opposed to time evolving solutions in,
e.g., electromagnetics [36–39]. The design of intertwined polari-
zation and phase, as is required for the full skyrmionic hopfion,
can be considered as an example of four-dimensionally structured
light. This is an alternative to the approach of spatiotemporal struc-
turing into (3+ 1)D light (see [2,52,53] and references therein).
Additionally, Gao et al. [24] pointed out the connection between

https://doi.org/10.6084/m9.figshare.22806482
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optical skyrmions and full-Poincaré beams. A higher-dimensional,
i.e., 3D, skyrmion will have the same property, meaning that there
are possible field configurations that cover S3 but carry skyrme
number 0. Furthermore, the evolution of the (baby) skyrmion at
the focal plane could be interesting to study in a further step.

The properties of skyrmionic hopfions can be applied in dif-
ferent areas of research. Their complex 3D texture of polarization
and phase, for instance, could help model field configurations in
other areas of physics, where direct access to the field parameters
is not easy. Karnieli et al. have already pointed out the connec-
tion between spin transport in magnetization textures and light
in a similar case [30], even mentioning the possibility to shape
optical flow. Furthermore, as recently suggested, interactions
between light and atoms would enable to excite a topologically
protected configuration in atomic layers [42], where different
skyrme numbers could then act as units of information. Similarly,
topological invariants have already been suggested for information
transport and encryption [54]. Hopfions and skyrmions can also
be considered for that role. It is important to note again that our
hopfion is constructed using paraxial beams and therefore in an
approximation. As such, it is only a first step and demonstrates
potential hurdles for applications. A natural next step would be to
investigate hopfion configurations in tightly focused light, which
can be constructed from Zernike polynomials [45].
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