11,384 research outputs found

    Renormalization of the periodic Anderson model: an alternative analytical approach to heavy Fermion behavior

    Full text link
    In this paper a recently developed projector-based renormalization method (PRM) for many-particle Hamiltonians is applied to the periodic Anderson model (PAM) with the aim to describe heavy Fermion behavior. In this method high-energetic excitation operators instead of high energetic states are eliminated. We arrive at an effective Hamiltonian for a quasi-free system which consists of two non-interacting heavy-quasiparticle bands. The resulting renormalization equations for the parameters of the Hamiltonian are valid for large as well as small degeneracy νf\nu_f of the angular momentum. An expansion in 1/νf1/\nu_f is avoided. Within an additional approximation which adapts the idea of a fixed renormalized \textit{f} level ϵ~f\tilde{\epsilon}_{f}, we obtain coupled equations for ϵ~f\tilde{\epsilon}_{f} and the averaged \textit{f} occupation . These equations resemble to a certain extent those of the usual slave boson mean-field (SB) treatment. In particular, for large νf\nu_f the results for the PRM and the SB approach agree perfectly whereas considerable differences are found for small νf\nu_f.Comment: 26 pages, 5 figures included, discussion of the DOS added in v2, accepted for publication in Phys. Rev.

    An infrared imaging search for low-mass companions to members of the young nearby beta Pic and Tucana/Horologium associations

    Full text link
    We present deep high dynamic range infrared images of young nearby stars in the Tucana/Horologium and beta Pic associations, all ~ 10 to 35 Myrs young and at ~10 to 60 pc distance. Such young nearby stars are well-suited for direct imaging searches for brown dwarf and even planetary companions, because young sub-stellar objects are still self-luminous due to contraction and accretion. We performed our observations at the ESO 3.5m NTT with the normal infrared imaging detector SofI and the MPE speckle camera Sharp-I. Three arc sec north of GSC 8047-0232 in Horologium a promising brown dwarf companion candidate is detected, which needs to be confirmed by proper motion and/or spectroscopy. Several other faint companion candidates are already rejected by second epoch imaging. Among 21 stars observed in Tucana/Horologium, there are not more than one to five brown dwarf companions outside of 75 AU (1.5" at 50 pc); most certainly only < 5 % of the Tuc/HorA stars have brown dwarf companions (13 to 78 Jupiter masses) outside of 75 AU. For the first time, we can report an upper limit for the frequency of massive planets (~ 10 M_jup) at wide separations (~ 100 AU) using a meaningfull and homogeneous sample: Of 11 stars observed sufficiently deep in beta Pic (12 Myrs), not more than one has a massive planet outside of ~ 100 AU, i.e. massive planets at large separations are rare (< 9 %).Comment: Astronomische Nachrichten, in pres

    Impact of strong disorder on the static magnetic properties of the spin-chain compound BaCu2SiGeO7

    Full text link
    The disordered quasi-1D magnet BaCu2SiGeO7 is considered as one of the best physical realizations of the random Heisenberg chain model, which features an irregular distribution of the exchange parameters and whose ground state is predicted to be the scarcely investigated random-singlet state (RSS). Based on extensive 29Si NMR and magnetization studies of BaCu2SiGeO7, combined with numerical Quantum Monte Carlo simulations, we obtain remarkable quantitative agreement with theoretical predictions of the random Heisenberg chain model and strong indications for the formation of a random-singlet state at low temperatures in this compound. As a local probe, NMR is a well-adapted technique for studying the magnetism of disordered systems. In this case it also reveals an additional local transverse staggered field (LTSF), which affects the low-temperature properties of the RSS. The proposed model Hamiltonian satisfactorily accounts for the temperature dependence of the NMR line shapes.Comment: 10 pages, 7 figure

    ALFA: First Operational Experience of the MPE/MPIA Laser Guide Star System for Adaptive Optics

    Get PDF
    The sodium laser guide star adaptive optics system ALFA has been constructed at the Calar Alto 3.5-m telescope. Following the first detection of the laser beacon on the wavefront sensor in 1997 the system is now being optimized for best performance. In this contribution we discuss the current status of the launch beam and the planned improvements and upgrades. We report on the performance level achieved when it is used with the adaptive optics system, and relate various aspects of our experience during operation of the system. We have begun to produce scientific results and mention two of these.Comment: 9 pages, 6 figures, LaTeX (spie.sty). SPIE conf proc 3353, Adaptive Optical System Technologies, March 199

    Classical limit of transport in quantum kicked maps

    Full text link
    We investigate the behavior of weak localization, conductance fluctuations, and shot noise of a chaotic scatterer in the semiclassical limit. Time resolved numerical results, obtained by truncating the time-evolution of a kicked quantum map after a certain number of iterations, are compared to semiclassical theory. Considering how the appearance of quantum effects is delayed as a function of the Ehrenfest time gives a new method to compare theory and numerical simulations. We find that both weak localization and shot noise agree with semiclassical theory, which predicts exponential suppression with increasing Ehrenfest time. However, conductance fluctuations exhibit different behavior, with only a slight dependence on the Ehrenfest time.Comment: 17 pages, 13 figures. Final versio

    A New Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes

    Get PDF
    We present the new open-source spherically-symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical EOS and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 solar mass zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.Comment: 25 pages, 6 figures, 2 appendices. Accepted for publication to the Classical and Quantum Gravity special issue for MICRA2009. Code may be downloaded from http://www.stellarcollapse.org Update: corrected title, small modifications suggested by the referees, added source term derivation in appendix
    • …
    corecore