687 research outputs found

    Connecting Gas Dynamics and Star Formation Histories in Nearby Galaxies: The VLA-ANGST Survey

    Get PDF
    In recent years, HST revolutionized the field of star formation in nearby galaxies. Due to its high angular resolution it has now become possible to construct star formation histories of individual stellar populations on scales of a few arcseconds spanning a range of up to ~600 Myr. This method will be applied to the ANGST galaxies, a large HST volume limited survey to map galaxies up to distances of 3.5-4.0 Mpc (excluding the Local Group). The ANGST sample is currently followed--up by high, ~6'' resolution VLA observations of neutral, atomic hydrogen (HI) in the context of VLA-ANGST, an approved Large VLA Project. The VLA resolution is well matched to that of the spatially resolved star formation history maps. The combination of ANGST and VLA-ANGST data will provide a new, promising approach to study essential fields of galaxy evolution such as the triggering of star formation, the feedback of massive stars into the interstellar medium, and the structure and dynamics of the interstellar medium.Comment: to appear in the proceedings to the conference: "The Evolution of Galaxies through the Neutral Hydrogen Window", Arecibo, PR, US

    Extended Star Formation and Molecular Gas in the Tidal Arms near NGC3077

    Full text link
    We report the detection of ongoing star formation in the prominent tidal arms near NGC 3077 (member of the M 81 triplet). In total, 36 faint compact HII regions were identified, covering an area of ~4x6 kpc^2. Most of the HII regions are found at HI column densities above 1x10^21 cm^-2 (on scales of 200 pc), well within the range of threshold columns measured in normal galaxies. The HII luminosity function resembles the ones derived for other low-mass dwarf galaxies in the same group; we derive a total star formation rate of 2.6x10^-3 M_sun/yr in the tidal feature. We also present new high-resolution imaging of the molecular gas distribution in the tidal arm using CO observations obtained with the OVRO interferometer. We recover about one sixth of the CO flux (or M_H2~2x10^6 M_sun, assuming a Galactic conversion factor) originally detected in the IRAM 30m single dish observations, indicating the presence of a diffuse molecular gas component in the tidal arm. The brightest CO peak in the interferometer map (comprising half of the detected CO flux) is coincident with one of the brightest HII regions in the feature. Assuming a constant star formation rate since the creation of the tidal feature (presumably ~3x10^8 years ago), a total mass of ~7x10^5 M_sun has been transformed from gas into stars. Over this period, the star formation in the tidal arm has resulted in an additional enrichment of Delta(Z)>0.002. The reservoir of atomic and molecular gas in the tidal arm is ~3x10^8 M_sun, allowing star formation to continue at its present rate for a Hubble time. Such wide-spread, low-level star formation would be difficult to image around more distant galaxies but may be detectable through intervening absorption in quasar spectra.Comment: Accepted for publication in the Astronomical Journa

    High-resolution Observations of Molecular Lines in Arp 220: Kinematics, Morphology, and Limits on the Applicability of the Ammonia Thermometer

    Get PDF
    We observe Arp 220, the nearest ultra-luminous infrared galaxy, over 4 GHz in the K and Ka bands, providing constraints for the kinematics and morphology, and identifying molecular species on scales resolving both nuclei (0".6 or 230 pc). We detect multiple molecular species, including hydroxyl (OH ^2Π_(3/2)J = 9/2 F= 4-4; 5-5) in both cores, and tentatively detect H_2O(6_(15)-5_(23)) at ~21.84 GHz in both nuclei, indicating the likely presence of maser emission. The observed frequency range also contains metastable ammonia transitions from (J, K) = (1, 1)–(5, 5), as well as the (9, 9) inversion line; together, they are a well-known thermometer of dense molecular gas. Furthermore, the non-metastable (4, 2) and (10, 9), and possibly the (3, 1), lines are also detected. We apply a standard temperature analysis to Arp 220; however, the analysis is complicated in that standard local thermal equilibrium (LTE) assumptions do not hold. There are indications that a substantial fraction of ammonia could be in the non-metastable transitions, as opposed to only the metastable ones. Thus, the non-metastable transitions could be essential to constraining the temperature. We compare all of these data to ALMA observations of this source, confirming the outflow previously observed by other tracers in both nuclei

    ALMA Multi-line Imaging of the Nearby Starburst Galaxy NGC 253

    Full text link
    We present spatially resolved (∼\sim50 pc) imaging of molecular gas species in the central kiloparsec of the nearby starburst galaxy NGC 253, based on observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA). A total of 50 molecular lines are detected over a 13 GHz bandwidth imaged in the 3 mm band. Unambiguous identifications are assigned for 27 lines. Based on the measured high CO/C17^{17}O isotopic line ratio (≳\gtrsim350), we show that 12^{12}CO(1-0) has moderate optical depths. A comparison of the HCN and HCO+^{+} with their 13^{13}C-substituted isotopologues shows that the HCN(1-0) and HCO+^{+}(1-0) lines have optical depths at least comparable to CO(1-0). H13^{13}CN/H13^{13}CO+^{+} (and H13^{13}CN/HN13^{13}C) line ratios provide tighter constraints on dense gas properties in this starburst. SiO has elevated abundances across the nucleus. HNCO has the most distinctive morphology of all the bright lines, with its global luminosity dominated by the outer parts of the central region. The dramatic variation seen in the HNCO/SiO line ratio suggests that some of the chemical signatures of shocked gas are being erased in the presence of dominating central radiation fields (traced by C2_{2}H and CN). High density molecular gas tracers (including HCN, HCO+^+, and CN) are detected at the base of the molecular outflow. We also detect hydrogen β\beta recombination lines that, like their α\alpha counterparts, show compact, centrally peaked morphologies, distinct from the molecular gas tracers. A number of sulfur based species are mapped (CS, SO, NS, C2_{2}S, H2_{2}CS and CH3_{3}SH) and have morphologies similar to SiO.Comment: 20 pages, 10 figures, accepted to the Astrophysical Journa

    Complex Radio Spectral Energy Distributions in Luminous and Ultraluminous Infrared Galaxies

    Get PDF
    We use the Expanded Very Large Array to image radio continuum emission from local luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in 1 GHz windows centered at 4.7, 7.2, 29, and 36 GHz. This allows us to probe the integrated radio spectral energy distribution (SED) of the most energetic galaxies in the local universe. The 4-8 GHz flux densities agree well with previous measurements. They yield spectral indices \alpha \approx -0.67 (where F_\nu \propto \nu^\alpha) with \pm 0.15 (1\sigma) scatter, typical of nonthermal (synchrotron) emission from star-forming galaxies. The contrast of our 4-8 GHz data with literature 1.5 and 8.4 GHz flux densities gives further evidence for curvature of the radio SED of U/LIRGs. The SED appears flatter near \sim 1 GHz than near \sim 6 GHz, suggesting significant optical depth effects at the lower frequencies. The high frequency (28-37 GHz) flux densities are low compared to extrapolations from the 4-8 GHz data. We confirm and extend to higher frequency a previously observed deficit of high frequency radio emission for luminous starburst galaxies.Comment: 7 pages, 3 figures, 1 table, accepted for publication in the EVLA Special Issue of ApJ Letter

    Triggered star formation and the creation of the supergiant H 1 in shell in IC 2574

    Get PDF
    Based on deep imaging from the Advanced Camera for Surveys aboard the Hubble Space Telescope (HST), we present new evidence that stellar feedback created a ~1 kpc supergiant H I shell (SGS) and triggered star formation (SF) around its rim in the M81 Group dwarf irregular galaxy IC 2574. Using photometry of the resolved stars from the HST images, we measure the star formation history of a region including the SGS, focusing on the past 500 Myr, and employ the unique properties of blue helium-burning stars to create a movie of SF in the SGS. We find two significant episodes of SF inside the SGS from 200-300 Myr and ~25 Myr ago. Comparing the timing of the SF events to the dynamic age of the SGS and the energetics from the H I and SF, we find compelling evidence that stellar feedback is responsible for creating the SGS and triggering secondary SF around its rim
    • …
    corecore