412 research outputs found

    Behaviors of Adult \u3ci\u3eAgrilus Planipennis\u3c/i\u3e (Coleoptera: Buprestidae)

    Get PDF
    A 2-year study was conducted in Canada (2003) and the United States (2005) to better understand searching and mating behaviors of adult Agrilus planipennis Fairmaire. In both field and laboratory, adults spent more time resting and walking than feeding or flying. The sex ratio in the field was biased towards males, which tended to hover around trees, likely looking for mates. There was more leaf feeding damage within a tree higher in the canopy than in the lower canopy early in the season, but this difference disappeared over time. In choice experiments, males attempted to mate with individuals of both sexes, but they landed more frequently on females than on males. A series of sexual behaviors was observed in the laboratory, including: exposure of the ovipositor/genitalia, sporadic jumping by males, attempted mating, and mating. Sexual behaviors were absent among 1-3 day-old beetles, but were observed regularly in 10-12 day-old beetles. Females were seen exposing their ovipositor, suggestive of pheromone-calling behavior. No courtship was observed prior to mating. Hovering, searching, and landing behaviors suggest that beetles most likely rely on visual cues during mate finding, although host-plant volatiles and/or pheromones might also be involved

    ERK/MAPK Signaling Is Required for Pathway-Specific Striatal Motor Functions

    Get PDF
    The ERK/MAPK intracellular signaling pathway is hypothesized to be a key regulator of striatal activity via modulation of synaptic plasticity and gene transcription. However, prior investigations into striatal ERK/MAPK functions have yielded conflicting results. Further, these studies have not delineated the cell-type-specific roles of ERK/MAPK signaling due to the reliance on globally administered pharmacological ERK/MAPK inhibitors and the use of genetic models that only partially reduce total ERK/MAPK activity. Here, we generated mouse models in which ERK/MAPK signaling was completely abolished in each of the two distinct classes of medium spiny neurons (MSNs). ERK/MAPK deletion in D1R-MSNs (direct pathway) resulted in decreased locomotor behavior, reduced weight gain, and early postnatal lethality. In contrast, loss of ERK/MAPK signaling in D2R-MSNs (indirect pathway) resulted in a profound hyperlocomotor phenotype. ERK/MAPK-deficient D2R-MSNs exhibited a significant reduction in dendritic spine density, markedly suppressed electrical excitability, and suppression of activity-associated gene expression even after pharmacological stimulation. Our results demonstrate the importance of ERK/MAPK signaling in governing the motor functions of the striatal direct and indirect pathways. Our data further show a critical role for ERK in maintaining the excitability and plasticity of D2R-MSNs

    Developing Partnerships and Recruiting Dyads for a Prostate Cancer Informed Decision Making Program: Lessons Learned From a Community-Academic-Clinical Team

    Get PDF
    Prostate cancer (PrCA) is the most commonly diagnosed non-skin cancer among men. PrCA mortality in African-American (AA) men in South Carolina is ~50% higher than for AAs in the U.S as a whole. AA men also have low rates of participation in cancer research. This paper describes partnership development and recruitment efforts of a Community-Academic-Clinical research team for a PrCA education intervention with AA men and women that was designed to address the discordance between high rates of PrCA mortality and limited participation in cancer research. Guided by Vesey\u27s framework on recruitment and retention of minority groups in research, recruitment strategies were selected and implemented following multiple brainstorming sessions with partners having established community relationships. Based on findings from these sessions culturally appropriate strategies are recommended for recruiting AA men and women for PrCA education research. Community-based research recruitment challenges and lessons learned are presented

    Hormonal gain control of a medial preoptic area social reward circuit

    Get PDF
    Neural networks that control reproduction must integrate social and hormonal signals, tune motivation, and invigorate social interactions. However, the neurocircuit mechanisms for these processes remain unresolved. The medial preoptic area (mPOA), an essential node for social behaviors and is comprised of molecularly-diverse neurons with widespread projections. Here, we identify a steroid-responsive subset of neurotensin (Nts) expressing mPOA neurons that interface with the ventral tegmental area (VTA) to form a socially-engaged reward circuit. Using in vivo 2-photon imaging in female mice, we show that mPOANts neurons preferentially encode attractive male cues compared to non-social appetitive stimuli. Ovarian hormone signals regulate both the physiological and cue encoding properties of these cells. Furthermore, optogenetic stimulation of mPOANts-VTA circuitry promotes rewarding phenotypes, social approach, and striatal dopamine release. Collectively, these data demonstrate that steroid-sensitive mPOA neurons encode ethologically-relevant stimuli and co-opt midbrain reward circuits to promote prosocial behavior critical for species survival

    Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses

    Get PDF
    Genetically encoded calcium indicators for visualizing dynamic cellular activity have greatly expanded our understanding of the brain. However, due to light scattering properties of the brain as well as the size and rigidity of traditional imaging technology, in vivo calcium imaging has been limited to superficial brain structures during head fixed behavioral tasks. This limitation can now be circumvented by utilizing miniature, integrated microscopes in conjunction with an implantable microendoscopic lens to guide light into and out of the brain, thus permitting optical access to deep brain (or superficial) neural ensembles during naturalistic behaviors. Here, we describe procedural steps to conduct such imaging studies using mice. However, we anticipate the protocol can be easily adapted for use in other small vertebrates. Successful completion of this protocol will permit cellular imaging of neuronal activity and the generation of data sets with sufficient statistical power to correlate neural activity with stimulus presentation, physiological state, and other aspects of complex behavioral tasks. This protocol takes 6–11 weeks to complete

    Behaviors of adult agrilus planipennis (Coleoptera: Buprestidae)

    Get PDF
    AbstrAct A 2-year study was conducted in Canada (2003) and the United States (2005) to better understand searching and mating behaviors of adult Agrilus planipennis Fairmaire. In both field and laboratory, adults spent more time resting and walking than feeding or flying. The sex ratio in the field was biased towards males, which tended to hover around trees, likely looking for mates. There was more leaf feeding damage within a tree higher in the canopy than in the lower canopy early in the season, but this difference disappeared over time. In choice experiments, males attempted to mate with individuals of both sexes, but they landed more frequently on females than on males. A series of sexual behaviors was observed in the laboratory, including: exposure of the ovipositor/ genitalia, sporadic jumping by males, attempted mating, and mating. Sexual behaviors were absent among 1-3 day-old beetles, but were observed regularly in 10-12 day-old beetles. Females were seen exposing their ovipositor, suggestive of pheromone-calling behavior. No courtship was observed prior to mating. Hovering, searching, and landing behaviors suggest that beetles most likely rely on visual cues during mate finding, although host-plant volatiles and/or pheromones might also be involved

    Ethnic inequalities and pathways to care in psychosis in England: a systematic review and meta-analysis

    Get PDF
    © The Author(s). 2018Background: As part of a national programme to tackle ethnic inequalities, we conducted a systematic review and meta-analysis of research on ethnic inequalities in pathways to care for adults with psychosis living in England and/or Wales. Methods: Nine databases were searched from inception to 03.07.17 for previous systematic reviews, including forward and backward citation tracking and a PROSPERO search to identify ongoing reviews. We then carried forward relevant primary studies from included reviews (with the latest meta-analyses reporting on research up to 2012), supplemented by a search on 18.10.17 in MEDLINE, Embase, PsycINFO and CINAHL for primary studies between 2012 and 2017 that had not been covered by previous meta-analyses. Results: Forty studies, all conducted in England, were included for our updated meta-analyses on pathways to care. Relative to the White reference group, elevated rates of civil detentions were found for Black Caribbean (OR = 3.43, 95% CI = 2.68 to 4.40, n = 18), Black African (OR = 3.11, 95% CI = 2.40 to 4.02, n = 6), and South Asian patients (OR = 1.50, 95% CI 1.07 to 2.12, n = 10). Analyses of each Mental Health Act section revealed significantly higher rates for Black people under (civil) Section 2 (OR = 1.53, 95% CI = 1.11 to 2.11, n = 3). Rates in repeat admissions were significantly higher than in first admission for South Asian patients (between-group difference p < 0.01). Some ethnic groups had more police contact (Black African OR = 3.60, 95% CI = 2.15 to 6.05, n = 2; Black Caribbean OR = 2.64, 95% CI = 1.88 to 3.72, n = 8) and criminal justice system involvement (Black Caribbean OR = 2.76, 95% CI = 2.02 to 3.78, n = 5; Black African OR = 1.92, 95% CI = 1.32 to 2.78, n = 3). The White Other patients also showed greater police and criminal justice system involvement than White British patients (OR = 1.49, 95% CI = 1.03 to 2.15, n = 4). General practitioner involvement was less likely for Black than the White reference group. No significant variations over time were found across all the main outcomes. Conclusions: Our updated meta-analyses reveal persisting but not significantly worsening patterns of ethnic inequalities in pathways to psychiatric care, particularly affecting Black groups. This provides a comprehensive evidence base from which to inform policy and practice amidst a prospective Mental Health Act reform. Trial registration: CRD42017071663Peer reviewedFinal Published versio

    Prefrontal cortex output circuits guide reward seeking through divergent cue encoding

    Get PDF
    The prefrontal cortex is a critical neuroanatomical hub for controlling motivated behaviours across mammalian species. In addition to intra-cortical connectivity, prefrontal projection neurons innervate subcortical structures that contribute to reward-seeking behaviours, such as the ventral striatum and midline thalamus. While connectivity among these structures contributes to appetitive behaviours, how projection-specific prefrontal neurons encode reward-relevant information to guide reward seeking is unknown. Here we use in vivo two-photon calcium imaging to monitor the activity of dorsomedial prefrontal neurons in mice during an appetitive Pavlovian conditioning task. At the population level, these neurons display diverse activity patterns during the presentation of reward-predictive cues. However, recordings from prefrontal neurons with resolved projection targets reveal that individual corticostriatal neurons show response tuning to reward-predictive cues, such that excitatory cue responses are amplified across learning. By contrast, corticothalamic neurons gradually develop new, primarily inhibitory responses to reward-predictive cues across learning. Furthermore, bidirectional optogenetic manipulation of these neurons reveals that stimulation of corticostriatal neurons promotes conditioned reward-seeking behaviour after learning, while activity in corticothalamic neurons suppresses both the acquisition and expression of conditioned reward seeking. These data show how prefrontal circuitry can dynamically control reward-seeking behaviour through the opposing activities of projection-specific cell populations
    • …
    corecore