200 research outputs found

    Ultrafast hole carrier relaxation dynamics in p-type CuO nanowires

    Get PDF
    Ultrafast hole carrier relaxation dynamics in CuO nanowires have been investigated using transient absorption spectroscopy. Following femtosecond pulse excitation in a non-collinear pump-probe configuration, a combination of non-degenerate transmission and reflection measurements reveal initial ultrafast state filling dynamics independent of the probing photon energy. This behavior is attributed to the occupation of states by photo-generated carriers in the intrinsic hole region of the p-type CuO nanowires located near the top of the valence band. Intensity measurements indicate an upper fluence threshold of 40 μJ/cm2 where carrier relaxation is mainly governed by the hole dynamics. The fast relaxation of the photo-generated carriers was determined to follow a double exponential decay with time constants of 0.4 ps and 2.1 ps. Furthermore, time-correlated single photon counting measurements provide evidence of three exponential relaxation channels on the nanosecond timescale

    The nitridation of ZnO nanowires

    Get PDF
    ZnO nanowires (NWs) with diameters of 50 to 250 nm and lengths of several micrometres have been grown by reactive vapour transport via the reaction of Zn with oxygen on 1 nm Au/Si(001) at 550°C under an inert flow of Ar. These exhibited clear peaks in the X-ray diffraction corresponding to the hexagonal wurtzite crystal structure of ZnO and a photoluminescence spectrum with a peak at 3.3 eV corresponding to band edge emission close to 3.2 eV determined from the abrupt onset in the absorption-transmission through ZnO NWs grown on 0.5 nm Au/quartz. We find that the post growth nitridation of ZnO NWs under a steady flow of NH3 at temperatures ≤600°C promotes the formation of a ZnO/Zn3N2 core-shell structure as suggested by the suppression of the peaks related to ZnO and the emergence of new ones corresponding to the cubic crystal structure of Zn3N2 while maintaining their integrity. Higher temperatures lead to the complete elimination of the ZnO NWs. We discuss the effect of nitridation time, flow of NH3, ramp rate and hydrogen on the conversion and propose a mechanism for the nitridation

    Femtosecond Carrier Dynamics in In2O3Nanocrystals

    Get PDF
    We have studied carrier dynamics in In2O3nanocrystals grown on a quartz substrate using chemical vapor deposition. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photo-generated carriers in In2O3nanocrystals. Intensity measurements reveal that Auger recombination plays a crucial role in the carrier dynamics for the carrier densities investigated in this study. A simple differential equation model has been utilized to simulate the photo-generated carrier dynamics in the nanocrystals and to fit the fluence-dependent differential absorption measurements. The average value of the Auger coefficient obtained from fitting to the measurements was γ = 5.9 ± 0.4 × 10−31 cm6 s−1. Similarly the average relaxation rate of the carriers was determined to be approximately τ = 110 ± 10 ps. Time-resolved measurements also revealed ~25 ps delay for the carriers to reach deep traps states which have a subsequent relaxation time of approximately 300 ps

    Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport

    Get PDF
    We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation

    Transient Photoinduced Absorption in Ultrathin As-grown Nanocrystalline Silicon Films

    Get PDF
    We have studied ultrafast carrier dynamics in nanocrystalline silicon films with thickness of a few nanometers where boundary-related states and quantum confinement play an important role. Transient non-degenerated photoinduced absorption measurements have been employed to investigate the effects of grain boundaries and quantum confinement on the relaxation dynamics of photogenerated carriers. An observed long initial rise of the photoinduced absorption for the thicker films agrees well with the existence of boundary-related states acting as fast traps. With decreasing the thickness of material, the relaxation dynamics become faster since the density of boundary-related states increases. Furthermore, probing with longer wavelengths we are able to time-resolve optical paths with faster relaxations. This fact is strongly correlated with probing in different points of the first Brillouin zone of the band structure of these materials

    Electron and Phonon Temperature Relaxation in Semiconductors Excited by Thermal Pulse

    Full text link
    Electron and phonon transient temperatures are analyzed in the case of nondegenerate semiconductors. An analytical solution is obtained for rectangular laser pulse absorption. It is shown that thermal diffusion is the main energy relaxation mechanism in the phonon subsystem. The mechanism depends on the correlation between the sample length and the electron cooling length in an electron subsystem. Energy relaxation occurs by means of the electron thermal diffusion in thin samples (), and by means of the electron-phonon energy interaction in thick samples (). Characteristic relaxation times are obtained for all the cases, and analysis of these times is made. Electron and phonon temperature distributions in short and long samples are qualitatively and quantitatively analyzed for different correlations between the laser pulse duration and characteristic times.Comment: 33 pages, 16 figure

    Ultralong-range polariton-assisted energy transfer in organic microcavities.

    Get PDF
    Non-radiative energy transfer between spatially-separated molecules in a microcavity can occur when an excitonic state on both molecules are strongly-coupled to the same optical mode, forming so-called ‘hybrid’ polaritons. Such energy transfer has previously been explored when thin-films of different molecules are relatively closely spaced (~100 nm). In this letter, we explore strong-coupled microcavities in which thin-films of two J-aggregated molecular dyes were separated by a spacer layer having a thickness of up to 2 μm. Here, strong light-matter coupling and hybridisation between the excitonic transition is identified using white-light reflectivity and photoluminescence emission. We use steady-state spectroscopy to demonstrate polariton-mediated energy transfer between such coupled states over ‘mesoscopic distances’, with this process being enhanced compared to non-cavity control structures

    Gallium hydride vapor phase epitaxy of GaN nanowires

    Get PDF
    Straight GaN nanowires (NWs) with diameters of 50 nm, lengths up to 10 μm and a hexagonal wurtzite crystal structure have been grown at 900°C on 0.5 nm Au/Si(001) via the reaction of Ga with NH3 and N2:H2, where the H2 content was varied between 10 and 100%. The growth of high-quality GaN NWs depends critically on the thickness of Au and Ga vapor pressure while no deposition occurs on plain Si(001). Increasing the H2 content leads to an increase in the growth rate, a reduction in the areal density of the GaN NWs and a suppression of the underlying amorphous (α)-like GaN layer which occurs without H2. The increase in growth rate with H2 content is a direct consequence of the reaction of Ga with H2 which leads to the formation of Ga hydride that reacts efficiently with NH3 at the top of the GaN NWs. Moreover, the reduction in the areal density of the GaN NWs and suppression of the α-like GaN layer is attributed to the reaction of H2 with Ga in the immediate vicinity of the Au NPs. Finally, the incorporation of H2 leads to a significant improvement in the near band edge photoluminescence through a suppression of the non-radiative recombination via surface states which become passivated not only via H2, but also via a reduction of O2-related defects
    corecore