68 research outputs found

    Transient Photoinduced Absorption in Ultrathin As-grown Nanocrystalline Silicon Films

    Get PDF
    We have studied ultrafast carrier dynamics in nanocrystalline silicon films with thickness of a few nanometers where boundary-related states and quantum confinement play an important role. Transient non-degenerated photoinduced absorption measurements have been employed to investigate the effects of grain boundaries and quantum confinement on the relaxation dynamics of photogenerated carriers. An observed long initial rise of the photoinduced absorption for the thicker films agrees well with the existence of boundary-related states acting as fast traps. With decreasing the thickness of material, the relaxation dynamics become faster since the density of boundary-related states increases. Furthermore, probing with longer wavelengths we are able to time-resolve optical paths with faster relaxations. This fact is strongly correlated with probing in different points of the first Brillouin zone of the band structure of these materials

    Electron and Phonon Temperature Relaxation in Semiconductors Excited by Thermal Pulse

    Full text link
    Electron and phonon transient temperatures are analyzed in the case of nondegenerate semiconductors. An analytical solution is obtained for rectangular laser pulse absorption. It is shown that thermal diffusion is the main energy relaxation mechanism in the phonon subsystem. The mechanism depends on the correlation between the sample length and the electron cooling length in an electron subsystem. Energy relaxation occurs by means of the electron thermal diffusion in thin samples (), and by means of the electron-phonon energy interaction in thick samples (). Characteristic relaxation times are obtained for all the cases, and analysis of these times is made. Electron and phonon temperature distributions in short and long samples are qualitatively and quantitatively analyzed for different correlations between the laser pulse duration and characteristic times.Comment: 33 pages, 16 figure

    Synthesis of Tin Nitride SnxNyNanowires by Chemical Vapour Deposition

    Get PDF
    Tin nitride (SnxNy) nanowires have been grown for the first time by chemical vapour deposition on n-type Si(111) and in particular by nitridation of Sn containing NH4Cl at 450 °C under a steady flow of NH3. The SnxNynanowires have an average diameter of 200 nm and lengths ≥5 μm and were grown on Si(111) coated with a few nm’s of Au. Nitridation of Sn alone, under a flow of NH3is not effective and leads to the deposition of Sn droplets on the Au/Si(111) surface which impedes one-dimensional growth over a wide temperature range i.e. 300–800 °C. This was overcome by the addition of ammonium chloride (NH4Cl) which undergoes sublimation at 338 °C thereby releasing NH3and HCl which act as dispersants thereby enhancing the vapour pressure of Sn and the one-dimensional growth of SnxNynanowires. In addition to the action of dispersion, Sn reacts with HCl giving SnCl2which in turn reacts with NH3leading to the formation of SnxNyNWs. A first estimate of the band-gap of the SnxNynanowires grown on Si(111) was obtained from optical reflection measurements and found to be ≈2.6 eV. Finally, intricate assemblies of nanowires were also obtained at lower growth temperatures

    Electrical behaviour, characteristics and properties of anodic aluminium oxide films coloured by nickel electrodeposition

    Get PDF
    Porous anodic films on 1050 aluminium substrate were coloured by AC electrodeposition of nickel. Several experiments were performed at different deposition voltages and nickel concentrations in the electrolyte in order to correlate the applied electrical power to the electrical behaviour, as well as the characteristics and properties of the coatings. The content of nickel inside the coatings reached 1.67 g/m2, depending on the experimental conditions. According to the applied AC voltage in comparison with the threshold voltage Ut, the coating either acted only as a capacitor when U\Ut and, when U[Ut, the behaviour during the anodic and cathodic parts of the power sine wave was different. In particular, due to the semi-conducting characteristics of the barrier layer, additional oxidation of the aluminium substrate occurred during the anodic part of the electrical signal, whilst metal deposition (and solvent reduction) occurred during the cathodic part; these mechanisms correspond to the blocked and pass directions of the barrier layer/electrolyte junction, respectively

    Low Temperature Growth of In2O3and InN Nanocrystals on Si(111) via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In

    Get PDF
    Indium oxide (In2O3) nanocrystals (NCs) have been obtained via atmospheric pressure, chemical vapour deposition (APCVD) on Si(111) via the direct oxidation of In with Ar:10% O2at 1000 °C but also at temperatures as low as 500 °C by the sublimation of ammonium chloride (NH4Cl) which is incorporated into the In under a gas flow of nitrogen (N2). Similarly InN NCs have also been obtained using sublimation of NH4Cl in a gas flow of NH3. During oxidation of In under a flow of O2the transfer of In into the gas stream is inhibited by the formation of In2O3around the In powder which breaks up only at high temperatures, i.e.T > 900 °C, thereby releasing In into the gas stream which can then react with O2leading to a high yield formation of isolated 500 nm In2O3octahedrons but also chains of these nanostructures. No such NCs were obtained by direct oxidation forTG < 900 °C. The incorporation of NH4Cl in the In leads to the sublimation of NH4Cl into NH3and HCl at around 338 °C which in turn produces an efficient dispersion and transfer of the whole In into the gas stream of N2where it reacts with HCl forming primarily InCl. The latter adsorbs onto the Si(111) where it reacts with H2O and O2leading to the formation of In2O3nanopyramids on Si(111). The rest of the InCl is carried downstream, where it solidifies at lower temperatures, and rapidly breaks down into metallic In upon exposure to H2O in the air. Upon carrying out the reaction of In with NH4Cl at 600 °C under NH3as opposed to N2, we obtain InN nanoparticles on Si(111) with an average diameter of 300 nm

    Fibre Bragg grating sensors in polymer optical fibres

    Get PDF
    This review paper summarises the current state of research into polymer optical fibre grating sensors. The properties of polymers are explored to identify situations where polymers offer potential advantages over more conventional silica fibre sensing technology. Photosensitivity is discussed and the sensitivities of polymer fibre gratings to strain, temperature and water are described. Finally, applications are reported which utilise the unique properties of polymer fibres

    Monitoring Charge Exchange in P3HT-Nanotube Composites Using Optical and Electrical Characterisation

    Get PDF
    Charge exchange at the bulk heterojunctions of composites made by mixing single wall nanotubes (SWNTs) and polymers show potential for use in optoelectronic devices such as solar cells and optical sensors. The density/total area of these heterojunctions is expected to increase with increasing SWNT concentration but the efficiency of solar cell peaks at low SWNT concentrations. Most researchers use current–voltage measurements to determine the evolution of the SWNT percolation network and optical absorption measurements to monitor the spectral response of the composites. However, these methods do not provide a detailed account of carrier transport at the concentrations of interest; i.e., near or below the percolation threshold. In this article, we show that capacitance–voltage (C–V) response of (metal)-(oxide)-(semiconducting composite) devices can be used to fill this gap in studying bulk heterojunctions. In an approach where we combine optical absorption methods withC–Vmeasurements we can acquire a unified optoelectronic response from P3HT-SWNT composites. This methodology can become an important tool for optoelectronic device optimization

    Advances and new applications using the acousto-optic effect in optical fibers

    Get PDF
    This work presents a short review of the current research on the acousto-optic mechanism applied to optical fibers. The role of the piezoelectric element and the acousto-optic modulator in the excitation of flexural and longitudinal acoustic modes in the frequency range up to 1.2 MHz is highlighted. A combination of the finite elements and the transfer matrix methods is used to simulate the interaction of the waves with Bragg and long period gratings. Results show a very good agreement with experimental data. Recent applications such as the writing of gratings under the acoustic excitation and a novel viscometer sensor based on the acousto-optic mechanism are discussed
    corecore