475 research outputs found

    A Study of the Super Market Industry

    Get PDF
    Part of this thesis is an attempt to explain briefly the circumstances which gave rise to the concept of self-service, and accelerated its development to the point of revolutionizing the entire field of distribution in the short period of a quarter-century. Food super markets are the most important segment in the American economy; thus, the writer focused his research mainly in this field. Self-service is still the heart of the super market, and, therefore, the reader should note that most of the principles applied here should also apply in non-food self-service stores

    Ultrafast hole carrier relaxation dynamics in p-type CuO nanowires

    Get PDF
    Ultrafast hole carrier relaxation dynamics in CuO nanowires have been investigated using transient absorption spectroscopy. Following femtosecond pulse excitation in a non-collinear pump-probe configuration, a combination of non-degenerate transmission and reflection measurements reveal initial ultrafast state filling dynamics independent of the probing photon energy. This behavior is attributed to the occupation of states by photo-generated carriers in the intrinsic hole region of the p-type CuO nanowires located near the top of the valence band. Intensity measurements indicate an upper fluence threshold of 40 μJ/cm2 where carrier relaxation is mainly governed by the hole dynamics. The fast relaxation of the photo-generated carriers was determined to follow a double exponential decay with time constants of 0.4 ps and 2.1 ps. Furthermore, time-correlated single photon counting measurements provide evidence of three exponential relaxation channels on the nanosecond timescale

    An investigation into the conversion of In2O3 into InN nanowires

    Get PDF
    Straight In2O3 nanowires (NWs) with diameters of 50 nm and lengths ≥2 μm have been grown on Si(001) via the wet oxidation of In at 850°C using Au as a catalyst. These exhibited clear peaks in the X-ray diffraction corresponding to the body centred cubic crystal structure of In2O3 while the photoluminescence (PL) spectrum at 300 K consisted of two broad peaks, centred around 400 and 550 nm. The post-growth nitridation of In2O3 NWs was systematically investigated by varying the nitridation temperature between 500 and 900°C, flow of NH3 and nitridation times between 1 and 6 h. The NWs are eliminated above 600°C while long nitridation times at 500 and 600°C did not result into the efficient conversion of In2O3 to InN. We find that the nitridation of In2O3 is effective by using NH3 and H2 or a two-step temperature nitridation process using just NH3 and slower ramp rates. We discuss the nitridation mechanism and its effect on the PL

    Tin Oxide Nanowires: The Influence of Trap States on Ultrafast Carrier Relaxation

    Get PDF
    We have studied the optical properties and carrier dynamics in SnO2nanowires (NWs) with an average radius of 50 nm that were grown via the vapor–liquid solid method. Transient differential absorption measurements have been employed to investigate the ultrafast relaxation dynamics of photogenerated carriers in the SnO2NWs. Steady state transmission measurements revealed that the band gap of these NWs is 3.77 eV and contains two broad absorption bands. The first is located below the band edge (shallow traps) and the second near the center of the band gap (deep traps). Both of these absorption bands seem to play a crucial role in the relaxation of the photogenerated carriers. Time resolved measurements suggest that the photogenerated carriers take a few picoseconds to move into the shallow trap states whereas they take ~70 ps to move from the shallow to the deep trap states. Furthermore the recombination process of electrons in these trap states with holes in the valence band takes ~2 ns. Auger recombination appears to be important at the highest fluence used in this study (500 μJ/cm2); however, it has negligible effect for fluences below 50 μJ/cm2. The Auger coefficient for the SnO2NWs was estimated to be 7.5 ± 2.5 × 10−31 cm6/s

    Structure, morphology, and photoluminescence of porous Si nanowires: effect of different chemical treatments

    Get PDF
    The structure and light-emitting properties of Si nanowires (SiNWs) fabricated by a single-step metal-assisted chemical etching (MACE) process on highly boron-doped Si were investigated after different chemical treatments. The Si nanowires that result from the etching of a highly doped p-type Si wafer by MACE are fully porous, and as a result, they show intense photoluminescence (PL) at room temperature, the characteristics of which depend on the surface passivation of the Si nanocrystals composing the nanowires. SiNWs with a hydrogen-terminated nanostructured surface resulting from a chemical treatment with a hydrofluoric acid (HF) solution show red PL, the maximum of which is blueshifted when the samples are further chemically oxidized in a piranha solution. This blueshift of PL is attributed to localized states at the Si/SiO(2) interface at the shell of Si nanocrystals composing the porous SiNWs, which induce an important pinning of the electronic bandgap of the Si material and are involved in the recombination mechanism. After a sequence of HF/piranha/HF treatment, the SiNWs are almost fully dissolved in the chemical solution, which is indicative of their fully porous structure, verified also by transmission electron microscopy investigations. It was also found that a continuous porous Si layer is formed underneath the SiNWs during the MACE process, the thickness of which increases with the increase of etching time. This supports the idea that porous Si formation precedes nanowire formation. The origin of this effect is the increased etching rate at sites with high dopant concentration in the highly doped Si material

    Group delay in Bragg grating with linear chirp

    Full text link
    An analytic solution for Bragg grating with linear chirp in the form of confluent hypergeometric functions is analyzed in the asymptotic limit of long grating. Simple formulas for reflection coefficient and group delay are derived. The simplification makes it possible to analyze irregularities of the curves and suggest the ways of their suppression. It is shown that the increase in chirp at fixed other parameters decreases the oscillations in the group delay, but gains the oscillations in the reflection spectrum. The conclusions are in agreement with numerical calculations.Comment: 16 pages, 8 figures, submitted to Opt. Com

    The nitridation of ZnO nanowires

    Get PDF
    ZnO nanowires (NWs) with diameters of 50 to 250 nm and lengths of several micrometres have been grown by reactive vapour transport via the reaction of Zn with oxygen on 1 nm Au/Si(001) at 550°C under an inert flow of Ar. These exhibited clear peaks in the X-ray diffraction corresponding to the hexagonal wurtzite crystal structure of ZnO and a photoluminescence spectrum with a peak at 3.3 eV corresponding to band edge emission close to 3.2 eV determined from the abrupt onset in the absorption-transmission through ZnO NWs grown on 0.5 nm Au/quartz. We find that the post growth nitridation of ZnO NWs under a steady flow of NH3 at temperatures ≤600°C promotes the formation of a ZnO/Zn3N2 core-shell structure as suggested by the suppression of the peaks related to ZnO and the emergence of new ones corresponding to the cubic crystal structure of Zn3N2 while maintaining their integrity. Higher temperatures lead to the complete elimination of the ZnO NWs. We discuss the effect of nitridation time, flow of NH3, ramp rate and hydrogen on the conversion and propose a mechanism for the nitridation

    Femtosecond Carrier Dynamics in In2O3Nanocrystals

    Get PDF
    We have studied carrier dynamics in In2O3nanocrystals grown on a quartz substrate using chemical vapor deposition. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photo-generated carriers in In2O3nanocrystals. Intensity measurements reveal that Auger recombination plays a crucial role in the carrier dynamics for the carrier densities investigated in this study. A simple differential equation model has been utilized to simulate the photo-generated carrier dynamics in the nanocrystals and to fit the fluence-dependent differential absorption measurements. The average value of the Auger coefficient obtained from fitting to the measurements was γ = 5.9 ± 0.4 × 10−31 cm6 s−1. Similarly the average relaxation rate of the carriers was determined to be approximately τ = 110 ± 10 ps. Time-resolved measurements also revealed ~25 ps delay for the carriers to reach deep traps states which have a subsequent relaxation time of approximately 300 ps
    corecore