60 research outputs found

    Processing and Characterization of High Density Polyethylene/Ethylene Vinyl Acetate Blends with Different VA Contents

    Get PDF
    Different series of high density Polyethylene/Ethylene Vinyl Acetate (HDPE/EVA) blends were prepared via melt blending in a corotating intermeshing twin screw extruder. The effects of VA percentage and EVA loading ratio on the thermal, rheological viscoelastic, mechanical, and fracture toughness of the blends were analyzed. The results showed that the addition of EVA to HDPE reduces the thermal, elastic, and viscoelastic properties of the blends. The microscopic examination of the fracture surface confirmed the ductile fracture of HDPE/EVA blends for all blend ratios and VA percentages. Increasing the EVA ratio and VA content caused a significant reduction in the blend crystallinity but had no significant effect on melting temperature. The complex viscosity increased with increasing the percentage of EVA due to the restriction of molecular mobility and reduction of free volume, induced by the addition of EVA. The storage modulus decreased with increasing the EVA ratio and temperature, while it increased with increasing the frequency. Young’s modulus, yield strength, and fracture strain decreased with increasing the EVA ratio. Similarly, the fracture toughness decreased proportional to the EVA percentage. Finally the results indicated that the VA content has significant effects on the mechanical, thermal, and dynamic properties of HDPE/EVA blends

    Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications

    Get PDF
    The versatile characteristic of epoxy and its diversity made it suitable for different industrial applications such as laminated circuit board, electronic component encapsulations, surface coatings, potting, fiber reinforcement, and adhesives. However, the pervasive applications in many high-performance field limited the epoxy use because of their delamination, low impact resistance, inherent brittleness, and fracture toughness behavior. The limitations of epoxy can be overcome by incorporation and modification before their industrial applications. Currently, modified epoxy resins are extensively used in fabrication of natural fiber-reinforced composites and in making its different industrial products because of their superior mechanical, thermal, and electrical properties. Present review article designed to be a comprehensive source of recent literature on epoxy structure, synthesis, modified epoxy, bio-epoxy resin, and its applications. This review article also aims to cover the recent advances in natural fiber-based epoxy composites and nanocomposites research study, including manufacturing techniques and their different industrial applications

    Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: mechanical and thermomechanical properties

    Get PDF
    The present article deals with the fabrication of magnesium hydroxide (MH) filler reinforced kenaf/epoxy hybrid composites with different loading (10%, 15%, 20% and 25% by wt). Tensile, impact, flexural, morphological, thermal stability and dynamic mechanical properties of the developed MH/kenaf/epoxy hybrid composites were evaluated and compared. The analysis of the results revealed that the incorporation of the stiff MH particles into the kenaf/epoxy composites enhanced their tensile, flexural and impact properties, as well as their residual content. Enhancement in both storage (E′) and loss (E″) moduli, as well as a considerable decrease in damping factor (Tan δ), was observed in the hybrid composites, compared to the kenaf/epoxy composites. Moreover, a remarkable improvement in properties was noticed for the 20% MH hybrid composites, which was ascribed to better dispersion and interfacial interaction between the kenaf fibers and the epoxy within composites, enabling more efficient interfacial stress transfer. Overall, the 20% MH/kenaf/epoxy hybrid composites presented better mechanical strength, thermal stability and dynamic properties compared to the rest of the hybrid composites developed in this study

    Effect of surface modified date palm fibre loading on mechanical, thermal properties of date palm reinforced phenolic composites

    Get PDF
    In this research NaOH treated date palm fibres were used as reinforcement in phenolic based composites. The composites were prepared by hot press technique and evaluated tensile flexural, structural, thermo gravimetric dynamic mechanical properties. Overall properties of modification/treatment of fibers’ surface enhanced, that have been studied as compared to untreated samples. The treated samples of 50% DPF composites showed highest Tensile properties among all composites but flexural properties declined compared to the untreated composites but this decline is very less. Fibre treatment showed declined properties of three point bending of DPF composites. Scanning Electron Microscopy studied the behavior of fibre and matrix bonding before and after treatment. Treated 50% DPF showed better fibre distribution, 60% DPF showed void content however 40%DPF showed poor fibre/matrix interfacial bonding. Thermogravimetric analysis studied the behavior of Treated DPF/Phenolic composites at high temperature, and found thermal stability enhanced because good interfacial bonding. Dynamic mechanical analysis showed that stability at stress of material with temperature and also studied the energy dissipation and internal friction. Treated 50%DPF showed better properties due to the ratio of mixing of fibre/matrix and better interfacial bonding. DPF composite have potential to use for exterior applications and false wall and roof

    A review on dynamic mechanical properties of natural fibre reinforced polymer composites

    Get PDF
    Dynamic mechanical analysis (DMA) is a versatile technique that complements the information provided by the more traditional thermal analysis techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermal mechanical analysis (TMA). The dynamic parameters such as storage modulus (E′), loss modulus (E″), and damping factor (Tan δ) are temperature dependent and provide information about interfacial bonding between the reinforced fibre and polymer matrix of composite material. The dynamic parameters were ominously influenced by the increase in fibre length and loading but not in a geometric progression. Dynamic loading conditions are frequently stumble in civil infrastructure systems due to sound, winds, earthquakes, ocean waves and live loads. Vibration damping parameters shows prime importance for structural applications in order to enhance the reliability, performance, buildings comfort and in the alleviation of bridges hazards. DMA also predicts the effects of time and temperature on polymer sealants viscoelastic performance under different environments. Present review article designed to be a comprehensive source of reported literature involving dynamic mechanical properties of natural fibre reinforced polymer composites, hybrid and nano composites and its applications. This review article will provides a perfect data to explore its industrial application primarily as cheaper construction and building materials for doing further research in this topic

    Isolation and characterization of microcrystalline cellulose from roselle fibers

    Get PDF
    In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28 μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research

    Thermomechanical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites

    Get PDF
    The dimensional stability and dynamic mechanical properties on bamboo (non woven mat)/kenaf (woven mat) hybrid composites was carried out in this study. The hybridization effect of bamboo (B) and kenaf (K) fibers at different weight ratio were studied at B:K:70:30, and B:K:30:70 while maintaining total fiber loading of 40% by weight. The coefficient of thermal expansion (CTE) and dynamic mechanical properties of composites were analyzed by thermomechanical anlayzer (TMA), and dynamic mechanical analyzer (DMA), respectively. Positive hybridization effects were observed on B:K:50:50 hybrid composite with lowest CTE and highest dynamic mechanical properties among all composites. The dimensional stability were strongly influence by the fiber orientation where all composites shows prominent expansion in the transverse fibers direction but relatively low expansion in longitudinal fibers direction. Dynamic mechanical properties in term of complex modulus (E*), storage modulus (E′), loss modulus (E″), Tan delta and Cole-Cole plot were studied. DMA results reveal that B:K:50:50 hybrid composite possess the highest complex modulus due to the strong fiber/matrix interfacial bonding which supported by the coefficient of effectiveness and Cole-Cole plot. Hence, it is concluded that 50:50 weight ratio of bamboo and kenaf fibers is the optimum mixing ratio to enhance both dimensional and dynamic mechanical properties of hybrid composites, and it can be utilized for automotive or building materials applications which demand high dimensional stability and dynamic mechanical properties

    Effect of accelerated environmental aging on tensile properties of oil palm/jute hybrid composites

    Get PDF
    Recently natural fibre based hybrid composites are receiving growing consideration due to environmental and biodegradability properties. In order to look behaviour of hybrid composites in outdoor applications, its environmental degradation properties such as UV accelerated weathering properties need to analyze. In this study oil palm empty fruit bunch (EFB) and jute fibres reinforced hybrid composites, pure EFB, pure jute and epoxy composites were fabricated through hand lay-up techniques. Hybrid composites with different layering pattern (EFB/jute/EFB and Jute/EFB/jute) while maintaining 40 wt. % total fibre loading were fabricates to compared with EFB and jute composites. Effect of UV accelerated environmental aging on tensile properties of epoxy, pure EFB, pure jute, and hybrid composites were assessed and evaluate under UV exposure. Tensile samples of all composites were subjected to accelerated weathering for 100h, at temperature (75°C), relative humidity (35%), Light (125 W/m2), and water spray off. Obtained results indicated that there is reduction in tensile strength, modulus and elongation at break values of hybrid and pure composites due to degradation of lignin and fibre–matrix interfacial bonding

    Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites

    Get PDF
    Hybrid composites were fabricated by compounding process with varying the relative weight fraction of oil palm empty fruit bunch (EFB) and coir fibers to assess the effect of hybridization of oil palm EFB with coir fibers in polypropylene (PP) matrix. The mechanical and morphological properties of oil palm/coir hybrid composites were carried out. Tensile and flexural properties of oil EFB-PP composites enhanced with hybridization of coir fibers except coir/oil palm EFB (25:75) hybrid composite, whereas highest impact properties at oil palm:coir fibers with 50:50 ratios. Results shown that hybrid composites with oil palm:coir fibers with 50:50 ratios display optimum mechanical properties. In this study, scanning electron microscopy (SEM) had been used to study morphology of tensile fractured surface of hybrid composites. Its clear from SEM micrograph that coir/EFB (50:50) hybrid composites display better tensile properties due to strong fiber/matrix bonding as compared with other formulations which lead to even and effective distribution of stress among fibers. The combination of oil palm EFB/coir fibers with PP matrix produced hybrid biocomposites material can be used to produce components such as rear mirrors' holder and window levers, fan blades, mallet, or gavel

    Thermal, physical properties and flammability of silane treated kenaf/ pineapple leaf fibres phenolic hybrid composites

    Get PDF
    Silane treated pineapple leaf fibre (PALF) and kenaf fibre were analyzed by Thermogravimetric analysis (TGA) that indicated the treated hybrid composite showed better thermal stability as compared to untreated hybrid composites. Dynamic mechanical analysis was carried out to evaluate the storage modulus (E′), loss modulus (E″), and tan delta as a function of temperature. Storage modulus of treated hybrid composites displayed highest storage and loss modulus as in comparison of untreated hybrid composites. The peak heights of tan α were highest in treated hybrid composites. Cole-Cole analysis was also carried out to understand the phase behaviour of the composite samples. Thermal mechanical analysis was used to study mechanical stability of hybrid composites in the presence of temperature. The effect of different fibre ratios in hybridization on density, void content, water absorption (WA), thickness swelling (TS) of PALF/KF hybrid composites were also analyzed. Treated hybrid composites were not very affective to improve the flammability of PALF/KF hybrid composites. The overall results showed that treated PALF/KF/phenolic hybrid composites improved the thermal and dynamic mechanical properties over untreated PALF/KF hybrid composites
    corecore