52 research outputs found

    The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts

    Get PDF
    Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis

    Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin

    Get PDF
    Palladin is a recently described phosphoprotein with an important role in cytoskeletal organization. The major palladin isoform (90-92 kDa) binds to three actin-associated proteins (ezrin, VASP and [alpha]-actinin), suggesting that palladin functions as a cytoskeletal scaffold. Here, we describe the organization of the palladin gene, which encodes multiple isoforms, including one (140 kDa) with a similar localization pattern to 90 kDa palladin. Overexpression of the 90 kDa or 140 kDa isoforms in COS-7 cells results in rearrangements of the actin cytoskeleton into super-robust bundles and star-like arrays, respectively. Sequence analysis of 140 kDa palladin revealed a conserved binding site for SH3 domains, suggesting that it binds directly to the SH3-domain protein Lasp-1. Binding of 140 kDa palladin, but not 90 kDa palladin, to Lasp-1 was confirmed by yeast two-hybrid and GST-pull-down assays. Isoform-specific siRNA experiments suggested that 140 kDa palladin plays a role in recruiting Lasp-1 to stress fibers. These results add Lasp-1, an actin-binding protein with a crucial role in cell motility, to the growing list of palladin's binding partners, and suggest that 140 kDa palladin has a specialized function in organizing the actin arrays that participate in cell migration and/or cellular contractility

    An interaction between alpha-actinin and the beta 1 integrin subunit in vitro

    Get PDF
    A number of cytoskeletal-associated proteins that are concentrated in focal contacts, namely alpha-actinin, vinculin, talin, and integrin, have been shown to interact in vitro such that they suggest a potential link between actin filaments and the membrane. Because some of these interactions are of low affinity, we suspect the additional linkages also exist. Therefore, we have used a synthetic peptide corresponding to the cytoplasmic domain of beta 1 integrin and affinity chromatography to identify additional integrin-binding proteins. Here we report our finding of an interaction between the cytoplasmic domain of beta 1 integrin and the actin-binding protein alpha-actinin. Beta 1- integrin cytoplasmic domain peptide columns bound several proteins from Triton extracts of chicken embryo fibroblasts. One protein at approximately 100 kD was identified by immunoblot analysis as alpha- actinin. Solid phase binding assays indicated that alpha-actinin bound specifically and directly to the beta 1 peptide with relatively high affinity. Using purified heterodimeric chicken smooth muscle integrin (a beta 1 integrin) or the platelet integrin glycoprotein IIb/IIIa complex (a beta 3 integrin), binding of alpha-actinin was also observed in similar solid phase assays, albeit with a lower affinity than was seen using the beta 1 peptide. alpha-Actinin also bound specifically to phospholipid vesicles into which glycoprotein IIb/IIIa had been incorporated. These results lead us to suggest that this integrin-alpha- actinin linkage may contribute to the attachment of actin filaments to the membrane in certain locations

    The role of palladin in actin organization and cell motility

    Get PDF
    Palladin is a widely expressed protein found in stress fibers, focal adhesions, growth cones, Z-discs, and other actin-based subcellular structures. It belongs to a small gene family that includes the Z-disc proteins myopalladin and myotilin, all of which share similar Ig-like domains. Recent advances have shown that palladin shares with myotilin the ability to bind directly to F-actin, and to crosslink actin filaments into bundles, in vitro. Studies in a variety of cultured cells suggest that the actin-organizing activity of palladin plays a central role in promoting cell motility. Correlative evidence also supports this hypothesis, as palladin levels are typically upregulated in cells that are actively migrating: in developing vertebrate embryos, in cells along a wound edge, and in metastatic cancer cells. Recently, a mutation in the human palladin gene was implicated in an unusually penetrant form of inherited pancreatic cancer, which has stimulated new ideas about the role of palladin in invasive cancer

    Structural Characterization of the Interactions between Palladin and α-Actinin

    Get PDF
    The interaction between α-actinin and palladin, two actin-crosslinking proteins, is essential for proper bidirectional targeting of these proteins. As a first step toward understanding the role of this complex in organizing cytoskeletal actin, we have characterized binding interactions between the EF hand domain of α-actinin (Act-EF34) and peptides derived from palladin, and generated a NMR-derived structural model for the Act-EF34/palladin peptide complex. The critical binding site residues are similar to an actinin binding motif previously suggested for the complex between Act-EF34 and titin Z-repeats. The structure-based model of the Act-EF34/palladin peptide complex expands our understanding of binding specificity between the scaffold protein α-actinin and various ligands, which appears to require an α-helical motif containing four hydrophobic residues, common to many α–actinin ligands. We also provide evidence that the Family-X mutation in palladin, associated with a highly penetrant form of pancreatic cancer, does not interfere with α-actinin binding

    Palladin Compensates for the Arp2/3 Complex and Supports Actin Structures during Listeria Infections

    Get PDF
    Palladin is an important component of motile actin-rich structures and nucleates branched actin filament arrays in vitro. Here we examine the role of palladin during Listeria monocytogenes infections in order to tease out novel functions of palladin. We show that palladin is co-opted by L. monocytogenes during its cellular entry and intracellular motility. Depletion of palladin resulted in shorter and misshapen comet tails, and when actin- or VASP-binding mutants of palladin were overexpressed in cells, comet tails disintegrated or became thinner. Comet tail thinning resulted in parallel actin bundles within the structures. To determine whether palladin could compensate for the Arp2/3 complex, we overexpressed palladin in cells treated with the Arp2/3 inhibitor CK-666. In treated cells, bacterial motility could be initiated and maintained when levels of palladin were increased. To confirm these findings, we utilized a cell line depleted of multiple Arp2/3 complex subunits. Within these cells, L. monocytogenes failed to generate comet tails. When palladin was overexpressed in this Arp2/3 functionally null cell line, the ability of L. monocytogenes to generate comet tails was restored. Using purified protein components, we demonstrate that L. monocytogenes actin clouds and comet tails can be generated (in a cell-free system) by palladin in the absence of the Arp2/3 complex. Collectively, our results demonstrate that palladin can functionally replace the Arp2/3 complex during bacterial actin-based motility

    Cytoplasmic Ig-domain proteins: Cytoskeletal regulators with a role in human disease

    Get PDF
    Immunoglobulin domains are found in a wide variety of functionally diverse transmembrane proteins, and also in a smaller number of cytoplasmic proteins. Members of this latter group are usually associated with the actin cytoskeleton, and most of them bind directly to either actin or myosin, or both. Recently, studies of inherited human disorders have identified disease-causing mutations in five cytoplasmic Ig-domain proteins: myosin-binding protein C, titin, myotilin, palladin, and myopalladin. Together with results obtained from cultured cells and mouse models, these clinical studies have yielded novel insights into the unexpected roles of Ig domain proteins in mechanotransduction and signaling to the nucleus. An emerging theme in this field is that cytoskeleton-associated Ig domain proteins are more than structural elements of the cell, and may have evolved to fill different needs in different cellular compartments

    Mapping of the alpha-actinin binding site within the beta 1 integrin cytoplasmic domain.

    Get PDF
    The actin cross-linking protein alpha-actinin binds to the cytoplasmic domain of the beta 1 subunit of integrin, suggesting that alpha-actinin may form a direct link between the actin cytoskeleton and the transmembrane fibronectin receptor. In this study, we have used short synthetic peptides to localize the binding site for alpha-actinin within the cytoplasmic domain of beta 1 integrin. Four 13-residue peptides were tested in both an affinity chromatographic assay and a solid-phase binding assay. The results indicated that two regions of sequence contribute to the binding of alpha-actinin: one near where the beta 1 cytoplasmic tail emerges from the membrane and a second segment located near the C terminus of the cytoplasmic tail. This binding pattern was investigated in more detail using an adaptation of the mimotope assay, in which each of the 32 overlapping sequential decapeptide segments from the beta 1 cytoplasmic domain was assembled on the head of a different plastic pin. The peptide-pin constructs were used to detect the binding of 125I-alpha-actinin. As predicted from our initial results, alpha-actinin was found to bind to two distinct clusters of peptide segments. This represents a novel use of the mimotope pin assay to map interactive sites on structural proteins

    Palladin is Upregulated in Kidney Disease and Contributes to Epithelial Cell Migration After Injury

    Get PDF
    Recovery from acute kidney injury involving tubular epithelial cells requires proliferation and migration of healthy cells to the area of injury. In this study, we show that palladin, a previously characterized cytoskeletal protein, is upregulated in injured tubules and suggest that one of its functions during repair is to facilitate migration of remaining cells to the affected site. In a mouse model of anti-neutrophilic cytoplasmic antibody involving both tubular and glomerular disease, palladin is upregulated in injured tubular cells, crescents and capillary cells with angiitis. In human biopsies of kidneys from patients with other kidney diseases, palladin is also upregulated in crescents and injured tubules. In LLC-PK1 cells, a porcine proximal tubule cell line, stress induced by transforming growth factor-β1 (TGF-β1) leads to palladin upregulation. Knockdown of palladin in LLC-PK1 does not disrupt cell morphology but does lead to a defect in cell migration. Furthermore, TGF-β1 induced increase in the 75 kDa palladin isoform occurs in both the nucleus and the cytoplasm. These data suggest that palladin expression is induced in injured cells and contributes to proper migration of cells in proximal tubules, possibly by regulation of gene expression as part of the healing process after acute injury
    • …
    corecore