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Abstract
Palladin is a widely expressed protein found in stress fibers, focal adhesions, growth cones, Z-discs,
and other actin-based subcellular structures. It belongs to a small gene family that includes the Z-
disc proteins myopalladin and myotilin, all of which share similar Ig-like domains. Recent advances
have shown that palladin shares with myotilin the ability to bind directly to F-actin, and to crosslink
actin filaments into bundles, in vitro. Studies in a variety of cultured cells suggest that the actin-
organizing activity of palladin plays a central role in promoting cell motility. Correlative evidence
also supports this hypothesis, as palladin levels are typically upregulated in cells that are actively
migrating: in developing vertebrate embryos, in cells along a wound edge, and in metastatic cancer
cells. Recently, a mutation in the human palladin gene was implicated in an unusually penetrant form
of inherited pancreatic cancer, which has stimulated new ideas about the role of palladin in invasive
cancer.
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Introduction
Cell motility is critically dependent on the actin cytoskeleton. Understanding the dynamics of
disassembly, relocation, and reassembly of cytoskeletal structures within the cell is essential
to understand the progression of many diseases, including cancer invasion and metastasis
(Fritz and Kaina, 2006; Lambrechts et al., 2004). Palladin is a recently discovered protein that
co-localizes with actin-rich structures in a wide variety of cell types (Mykkanen et al., 2001;
Parast and Otey, 2000). There is now accumulating evidence, obtained from both cultured cell
studies and microarray analysis of gene expression, to support the hypothesis that palladin
plays a key role in the migration of invasive cells. Below, we describe results indicating that
palladin has a critical function in generating the actin-based podosomes that contribute to
invasive motility. In addition, our recent results suggest that palladin occupies an unusual
functional niche, as it is both a molecular scaffold for multiple actin-binding proteins and also
an actin-crosslinking protein itself. Thus, it appears that palladin plays an important role in
organizing actin arrays within migrating cells, through both direct and indirect molecular
mechanisms.
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Palladin and its relatives: a small family of Ig-domain proteins
Palladin was cloned independently in the Otey lab and in the lab of Olli Carpen, and was found
to be very widely expressed in vertebrates (Mykkanen et al., 2001; Parast and Otey, 2000). In
fact, 90-kDa palladin is ubiquitous in tissues of developing mammals, although it is
downregulated in many adult tissues (Parast and Otey, 2000; Rachlin and Otey, 2006). Palladin
exists as multiple isoforms that arise from a single gene, and the complexity of palladin isoform
expression is still a subject of active investigation. In mice, there are three major isoforms that
arise from alternative start sites (resolving at 90, 140 and 200 kDa), but many other isoforms
may be generated in specific cell types via alternative splicing. Like the 90-kDa isoform, 140-
kDa palladin is widely expressed in developing organs, while the 200-kDa isoform has been
detected only in heart and bone (Rachlin and Otey, 2006). The domain structures of these
isoforms are illustrated in Figure 1. In addition, a palladin isoform of ~115 kDa was reported
in HeLa cells (Parast and Otey, 2000), while 50-kDa and 75-kDa isoforms have been observed
in mouse embryo fibroblasts and human tumor-associated fibroblasts, respectively (Luo et al.,
2005; Salaria et al., 2007). These isoforms have not yet been fully characterized, so their domain
structures are unknown.

Palladin has two close relatives that are expressed in a more restricted pattern: myopalladin is
found only in heart and skeletal muscle (Bang et al., 2001), and myotilin is expressed mostly
in skeletal muscle (Salmikangas et al., 1999). It appears that myotilin and palladin may share
many functions, as myotilin also plays an important role in generating actin-based arrays.
Mutations in human myotilin are associated with two distinct inherited muscular disorders,
limb-girdle muscular dystrophy 1A and myofibrillar myopathy (Hauser et al., 2000; Selcen
and Engel, 2004). In both disorders, affected individuals exhibit ultrastructural changes of the
sarcomere, such as Z-disc streaming, and also weakness of the extremities and cardiomyopathy.
These disease phenotypes support the hypothesis that proteins of the palladin family are
essential for normal actin organization and anchoring of actin filaments.

Palladin, myotilin and myopalladin all contain multiple copies of a distinctive Ig-like domain
(immunoglobulin-like domain). Ig domains typically contain ~100 amino acids and consist of
seven to nine folded strands. In addition to being a signature domain of this protein family,
similar Ig domains have been described in a small number of other intracellular proteins in
vertebrates, including myomesin, titin, MyBP-C and MyBP-H (Okagaki et al., 1993; Vaughan
et al., 1992). The majority of these intracellular Ig-like domain-containing proteins are
specifically expressed in striated muscle, suggesting that this particular type of Ig domain may
play a special role in creating the highly ordered cytoskeleton of the sarcomere (Gilbert et al.,
1999; Vaughan et al., 1992). Certain inherited forms of heart disease are associated with
mutations affecting the Ig domains of either titin or MyBP-C, which supports the idea that Ig
domains have a key role in maintaining sarcomere integrity (Gerull et al., 2002, 2006; Watkins
et al., 1995).

Currently, the precise molecular function of palladin family Ig domains is a matter of debate.
Myotilin has been shown to bind directly to F-actin, to promote the bundling of actin in vitro,
and to have an overexpression phenotype similar to that of palladin, generating unusual, super-
robust actin bundles in transfected cells (Salmikangas et al., 2003; von Nandelstadh et al.,
2005). An analysis of myotilin fragments suggests that the Ig domains of myotilin are required
for its actin-binding activity. In addition, the skeletal muscles of certain invertebrate species
express a protein called kettin, which has 31 copies of an Ig domain (Hakeda et al., 2000).
Recently, a kettin fragment containing only the four C-terminal Ig domains was shown to bind
directly to F-actin (Ono et al., 2006), suggesting that binding of actin by Ig domains may be a
highly conserved molecular mechanism shared by both vertebrate and invertebrate proteins.
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The fact that purified myotilin crosslinks actin filaments in vitro suggests the interesting
possibility that palladin might also function as an F-actin-binding protein. To test this idea, it
was necessary to express and purify both full-length palladin and multiple palladin fragments,
and assay for their ability to bind directly to F-actin and to crosslink F-actin into bundles. In
actin co-sedimentation assays, full-length 90-kDa palladin was shown to bind F-actin with a
Kd of about 2 µM, consistent with the affinity measurements made for other actin-binding
proteins, such as α-actinin (Dixon et al., 2008). Furthermore, purified 90-kDa palladin
crosslinked actin filaments into bundles, indicating that monomeric palladin may either possess
two actin-binding sites, or that palladin monomers with single actin-binding sites may dimerize.

Because the actin-binding region of myotilin was located near its C-terminal Ig domains,
fragments of the palladin C-terminus were purified to test for actin binding. Ig3, but not Ig4
or Ig5, bound to F-actin in a salt-dependant manner, suggesting an electrostatic interaction. A
tandem construct consisting of Ig3, a linker region, and Ig4 bound actin with a Kd of about 8
µM, and was capable of crosslinking actin filaments in vitro. The mechanism of actin bundling
by the Ig3-Ig4 fragment is still under investigation, and may involve homodimer formation,
although that is not yet clear (Dixon et al., 2008).

Palladin possesses the characteristics of a molecular scaffold
In addition to its role as an actin-crosslinking protein, palladin appears to function as a
cytoskeletal scaffolding molecule, as it interacts with a large number of actin-binding proteins
with important roles in organizing actin filament arrays. All palladin isoforms contain one or
two proline-rich regions that function as protein interaction sites. One proline-rich region (PR2)
is found in all three of the major palladin isoforms, and this domain binds directly to the actin-
regulating proteins VASP (and its relatives Mena and EVL), profilin and Eps8 (Boukhelifa et
al., 2004, 2006; Goicoechea et al., 2006). The 140- and 200-kDa isoforms of palladin possess
another proline-rich region (PR1), which contains two more binding sites for members of the
VASP protein family. This proline-rich region also binds to Lasp-1, an actin-binding protein
from the nebulin/nebulette family (Rachlin and Otey, 2006). It is noteworthy that Lasp-1
expression is required for normal cell migration, and that mis-regulated Lasp-1 has been
implicated in the motility of ovarian cancer and breast cancer cells (Grunewald et al., 2006,
2007a, b; Lin et al., 2004).

In addition, palladin binds to α-actinin, a widely expressed actin-crosslinking protein, which
docks in the region between PR2 and Ig-3 (Ronty et al., 2004). Alpha-actinin is a member of
the spectrin/dystrophin family, and it is ubiquitously expressed in vertebrate cells. In all non-
muscle cells, it exists as two isoforms: actinin-1 and actinin-4. α-Actinin plays an important
role in both cell-matrix and cell-cell adhesion (Otey and Carpen, 2004). A potential role for
α-actinin overexpression in tumorigenicity was first demonstrated over a decade ago in cultured
cells (Gluck and Ben-Ze'ev, 1994), and, both actinin-1 and actinin-4 are overexpressed in
metastatic sub-populations of cancer cells (Hatakeyama et al., 2006; Honda et al., 1998;
Suehara et al., 2006). The strong binding interaction between α-actinin and palladin, and their
high degree of co-localization in cells and tissues, suggest that these proteins may have a shared
function in motility and adhesion that may be dis-regulated in cancer cells.

Palladin also binds to ezrin, a member of the ERM family of actin-associated scaffolds
(Mykkanen et al., 2001). A large body of literature implicates ezrin in the metastasis of many
different types of human tumors (Curto and McClatchey, 2004), which suggests that multiple
components of the palladin pathway may be coordinately upregulated in invasive cancer cells.

In addition to the diverse set of actin-binding proteins described above, palladin also binds to
signaling intermediaries such as ArgBP-2 and SPIN-90 (Ronty et al., 2005, 2007). Palladin
binds to Src, a key player in podosome formation, and expression of palladin is required for

Goicoechea et al. Page 3

Eur J Cell Biol. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the actin-cytoskeleton rearrangements that occur downstream of active Src (Ronty et al.,
2007). Taken together, the diversity of palladin binding partners suggests that palladin regulates
the organization of the actin cytoskeleton via multiple molecular pathways.

The role of palladin in cell motility
Many lines of evidence indicate that palladin plays a critical role in the process of cell motility.
Palladin is required for one specific type of actin-based motility, the outgrowth of neuronal
extensions that occurs through the migration of growth cones: when palladin expression was
knocked down in primary neurons and neuroblastoma cells, neurite extension failed to occur
(Boukhelifa et al., 2001). The role of palladin in cell motility is likely to be the direct result of
its role in organizing actin filaments into functional arrays, as both knockdown and
overexpression of palladin results in gross reorganization of the actin cytoskeleton. For
example, when palladin expression was down-regulated in cultured fibroblasts using antisense
approaches, stress fibers and focal adhesions were lost, and the cells rounded up (Parast and
Otey, 2000). The converse is also true: when palladin was overexpressed in Cos7 cells and
astrocytes, a dramatic increase in the number and size of actin bundles was observed
(Boukhelifa et al., 2003; Rachlin and Otey, 2006). These findings suggest a molecular function
of palladin in promoting the assembly of subcellular arrays of actin. These results were
confirmed recently through the use of palladin null fibroblasts. Fibroblasts cultured from
palladin knockout embryos display defects in cell motility, adhesion, integrin expression, and
actin organization (Liu et al., 2007; Luo et al., 2005). Together, these published results show
that palladin plays a central role in organizing the actin arrays required for normal cell adhesion
and motility.

Recently, we obtained results that shed light on one specific role that palladin may play in
invasive motility. Invadopodia are actin-rich structures found in invasive cells and in cells that
cross tissue boundaries (Buccione et al., 2004; Chen and Kelly, 2003; Weaver, 2006). They
provide an attractive model to study the mechanics of the actin cytoskeleton at sites of cell-
matrix interaction. Invadopodia are membrane protrusions that form on the ventral surfaces of
cells, and they are thought to be closely related to two other types of actin-rich structures:
podosomes and dorsal ruffles. Podosomes are highly dynamic structures involved in the
adhesion of cells to solid substrates, and they also play a role in tissue invasion and matrix
remodeling. Podosomes contain a densely-bundled core of actin filaments, surrounded by a
ring that contains adhesion and scaffolding proteins (Calle et al., 2004; Chellaiah et al.,
2000; Destaing et al., 2003; Pfaff and Jurdic, 2001; Buccione et al., 2004). Podosomes are
classically described in monocyte-derived cells such as macrophages and osteoclasts, but have
recently been discovered in many other cell types, where they are found in specific patterns
such as clusters, bands, belts or rosettes (Buccione et al., 2004; Linder and Kopp, 2005). Dorsal
ruffles (also called waves or ring ruffles) are also highly dynamic, and form transiently on the
dorsal plasma membrane (Buccione et al., 2004; Orth and McNiven, 2006). They form in
response to stimulation by a variety of receptor-tyrosine-kinase growth factors and are
important for cytoplasmic remodeling, the establishment of polarity in motile cells and
macropinocytosis (Dowrick et al., 1993; Krueger et al., 2003; Orth and McNiven, 2003;
Swanson and Watts, 1995; Warn et al., 1993).

The palladin-binding protein Eps8 is critically involved in the formation of dorsal ruffles and
podosomes, and Eps8 also plays a role in breast and thyroid cancer, and in metastatic invasion
(Griffith et al., 2006; Matoskova et al., 1995; Yao et al., 2006). To determine if palladin shares
a role with Eps8 in the formation of both dorsal ruffles and podosomes, RNAi techniques were
used to knock down palladin expression in A7r5 cells, a cultured cell line that is highly
responsive to stimulation with platelet-derived growth factor and phorbol-12,13-dibutyrate.
These experiments revealed that (1) palladin is strongly recruited to protrusive dorsal ruffles
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that form transiently in response to growth factor stimulation, as shown in Figure 2, (2) palladin
also localizes to podosomes on the ventral cell surface after phorbol ester stimulation (Fig. 2),
(3) knockdown of palladin results in greatly impaired formation of podosomes and dorsal
ruffles, and (4) palladin plays a role in Rac activation (Goicoechea et al., 2006). These results
suggest that palladin and Eps8 act together in remodeling the actin cytoskeleton in response to
growth factor and phorbol ester treatment. As we discuss above, palladin plays a role as an
actin-crosslinking protein and also as a cytoskeletal scaffolding molecule, leading to the
hypothesis that palladin may be involved in any of the following steps of ruffle and podosome
formation: 1) by being part of an intracellular signaling complex induced by growth factor or
phorbol ester stimulation; 2) by organizing the actin networks at specific subcellular sites by
crosslinking actin filaments into bundles; or 3) by functioning as a scaffolding molecule to
recruit other actin-binding proteins that are required for podosome and ruffle formation.

The role of palladin in embryonic development and wound healing
Using a microarray approach, the Bronner-Fraser lab showed that the palladin gene is highly
upregulated in migratory neural crest cells, a cell type that plays a complex and essential role
in vertebrate development (Gammill and Bronner-Fraser, 2002). Neural crest cells are well
known to display a very aggressive form of invasive motility, suggesting that palladin
upregulation might be required in order for neural crest cells to achieve their final destination
during embryonic development. This idea gained support when a palladin knockout mouse
was generated that was embryonic lethal (Luo et al., 2005). The embryos die by day E15 and
display multiple defects before dying, including exencephaly (anterior neural tube closure
defect), and herniation of abdominal organs due to failure of the body wall to close ventrally,
which supports the hypothesis that palladin is critically required for normal cell motility during
embryogenesis.

In addition to its role in mammalian development, palladin also appears to have a conserved
function in tissue remodeling in response to injury. In wounded tissue, a strong correlation
exists between high levels of palladin expression and increased cell migration. The first
observation of this type was made by Boukhelifa and colleagues, who reported that palladin
is rapidly up-regulated in the reactive astrocytes that develop after injury to the central nervous
system. Quiescent astrocytes in the adult central nervous system do not express detectable
levels of palladin, nor do they contain appreciable levels of F-actin. After injury, these cells
become hypertrophic and migratory, increasing palladin expression and assembling
filamentous actin arrays (Boukhelifa et al., 2003).

Similarly, palladin was shown to be rapidly up-regulated when fibroblasts differentiate into
the highly-contractile myofibroblasts, either in response to skin injury or in response to TGF-
β1 treatment. TGF-β1 increased the expression of the 90-kDa palladin isoform, and led to the
de novo expression of the 140-kDa form (Ronty et al., 2006). The investigators of this study
utilized both human patient samples of skin lesions and a rat model of experimental dermal
wounds, and in each case, palladin was observed in myofibroblasts near the wound site, and
its upregulation preceded the expression of the classic myofibroblast marker α-smooth muscle
actin.

Finally, palladin was found to be up-regulated downstream of angiotensin II treatment in
vascular smooth muscle cells (SMCs). SMCs become highly migratory after vascular injury,
and participate in the vessel remodeling that occurs throughout chronic hypertension. Palladin
was detected in SMCs of the tunica media and neointima of injured rat aorta, and experimental
overexpression of palladin in SMCs was shown to increase their migration rate in vitro (Jin et
al., 2007).
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The role of palladin in invasive cancers
Multiple recent studies suggest that palladin may also play a role in the invasive cell motility
that characterizes metastatic cancer cells. For example, the Kern lab used serial analysis of
gene expression to identify a cluster of invasion-specific genes in pancreatic and colorectal
cancers, and the palladin gene was found within this cluster (Ryu et al., 2001). More recently,
the Condeelis lab applied an innovative approach to address the same question in human breast
cancer. They coated a microneedle with growth factors and used it to capture invasive breast
cancer cells that were migrating out from a human tumor implanted in a mouse host. Microarray
analysis was then utilized to identify specific genes that were upregulated in this captured
population of aggressively motile cells, as compared to the non-motile cells in the primary
tumor, to provide information on the “gene expression signature of invasion”. In this study,
the human palladin gene was highly upregulated (~3-fold) in the invasive cells (Wang et al.,
2004). These correlative studies point to the need for additional mechanistic approaches to test
directly the hypothesis that palladin overexpression contributes to metastasis.

Perhaps the strongest evidence for a role of palladin in invasive cancer comes from a recent
study of the genes involved in pancreatic cancer. Pancreatic adenocarcinoma is uniformly
lethal, usually in less than a year after diagnosis, and highly invasive. It is believed that
approximately 10% of all cases of pancreatic cancer result from an inherited susceptibility, but
very few candidate genes have been identified (Banke et al., 2000; Rulyak and Brentnall,
2001). In the search for novel pancreatic cancer genes, much attention has been focused on a
large North American family, called “Family X”, who has an exceptionally high incidence of
this disease: in four generations, nine members of Family X have been diagnosed with
pancreatic cancer, and nine more with pre-cancerous lesions of the pancreas. In 2002, the
Brentnall lab at the University of Washington mapped the susceptibility locus in Family X to
a region of chromosome 4q (Eberle et al., 2002), and subsequently, an exonic point mutation
was identified in the palladin gene in Family X (Pogue-Geile et al., 2006). Although this
discovery is exciting, it is not yet possible to state with certainty that the palladin mutation
causes pancreatic cancer in Family X, as not all of the genes within the susceptibility locus
have been fully sequenced; however, the evidence in support of this idea is compelling. First,
the palladin mutation occurs in all of the affected family members, but none of the unaffected
members in Family X. In addition, it is important to note that genes that are mutated in inherited
forms of cancer are frequently mis-regulated through other mechanisms in sporadic forms of
the disease. In the case of pancreatic cancer, palladin is overexpressed in sporadic pancreatic
tumors, as shown by both microarray analysis and immunohistochemical staining of tumor
sections (Pogue-Geile et al., 2006; Salaria et al., 2007). Finally, it is interesting to note that
two of the palladin-binding proteins, ezrin and Eps8, are also upregulated in pancreatic tumors
and metastatic tumor-derived cell lines (Akisawa et al., 1999; Welsch et al., 2007), which
supports the idea that multiple members of an actin-organizing molecular pathway may be
coordinately upregulated in highly invasive cancer cells.

An integrated model: palladin as a TGF-β1-induced actin organizer
When considering the potential role of palladin in embryonic development, wound healing and
cancer metastasis, a unifying theme emerges, as illustrated in Figure 3. In each of these
processes, two types of signals are involved: chemical signals such as cytokines and growth
factors, and mechanical signals such as changes in matrix stiffness and cytoskeletal tension.
For example, recent reviews have highlighted the fact that TGF-β1 stimulation acts in concert
with increased matrix rigidity to trigger the differentiation of the myofibroblasts associated
with wound healing (Hinz, 2007). Myofibroblast differentiation includes an associated increase
in stress fiber formation and cellular contractility, suggesting that upregulation of actin-
bundling proteins is a key part of the process. Interestingly, very similar stimuli appear to
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activate the carcinoma-associated fibroblasts (sometimes referred to as “tumor-associated
myofibroblasts”) that contribute to the tumor microenvironment and promote the invasive
motility of adenocarcinoma cells (reviewed in (Kalluri and Zeisberg, 2006)). Mechanical forces
are also involved in regulating stem cell differentiation: human mesenchymal stem cells will
differentiate along a neuronal lineage when cultured on soft matrices, or along an osteoid linage
when grown on more rigid substrates (Engler et al., 2006). The stiffness of the matrix, in turn,
determines the organizational state of the actin cytoskeleton, which also plays a role in
establishing the lineage of stem cells (McBeath et al., 2004). There is also a connection between
TGF-β1 and podosome formation, as rosettes of podosomes form in aortic endothelial cells in
response to TGF-β1 treatment (Varon et al., 2006). In this context, it is interesting to note that
palladin protein levels increase significantly in human dermal fibroblasts in response to TGF-
β1 treatment (Ronty et al., 2006), and palladin is upregulated in human adipose-derived stem
cells in response to both chemical signals and mechanical stimulation (Wall et al., 2007). Thus,
in the future, it will be important to determine if changes in palladin expression, stimulated by
growth factors or mechanical signals or both, represent an essential step in determining the
behavior, morphology and actin organization of embryonic cells, myofibroblasts, osteoclasts,
endothelial cells, tumor cells, and other cell types that possess the ability to actively remodel
the extracellular matrix.

Acknowledgements
This lab is supported by grants from the UNC Center for Gastrointestinal Biology and Disease, the North Carolina
Biotechnology Center, the NIH, and the American Heart Association.

References
Akisawa N, Nishimori I, Iwamura T, Onishi S, Hollingsworth MA. High levels of ezrin expressed by

human pancreatic adenocarcinoma cell lines with high metastatic potential. Biochem. Biophys. Res.
Commun 1999;258:395–400. [PubMed: 10329398]

Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H,
Gregorio CC, Labeit S. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles
in Z-disc and I-band protein assemblies. J. Cell Biol 2001;153:413–427. [PubMed: 11309420]

Banke MG, Mulvihill JJ, Aston CE. Inheritance of pancreatic cancer in pancreatic cancer-prone families.
Med. Clin. North Am 2000;84:677–690. [PubMed: 10872424]x-xi

Boukhelifa M, Parast MM, Valtschanoff JG, LaMantia AS, Meeker RB, Otey CA. A role for the
cytoskeleton-associated protein palladin in neurite outgrowth. Mol. Biol. Cell 2001;12:2721–2729.
[PubMed: 11553711]

Boukhelifa M, Hwang SJ, Valtschanoff JG, Meeker RB, Rustioni A, Otey CA. A critical role for palladin
in astrocyte morphology and response to injury. Mol. Cell. Neurosci 2003;23:661–668. [PubMed:
12932445]

Boukhelifa M, Parast MM, Bear JE, Gertler FB, Otey CA. Palladin is a novel binding partner for Ena/
VASP family members. Cell Motil. Cytoskeleton 2004;58:17–29. [PubMed: 14983521]

Boukhelifa M, Moza M, Johansson T, Rachlin A, Parast M, Huttelmaier S, Roy P, Jockusch BM, Carpen
O, Karlsson R, Otey CA. The proline-rich protein palladin is a binding partner for profilin. FEBS J
2006;273:26–33. [PubMed: 16367745]

Buccione R, Orth JD, McNiven MA. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles.
Nat. Rev. Mol. Cell Biol 2004;5:647–657. [PubMed: 15366708]

Calle Y, Jones GE, Jagger C, Fuller K, Blundell MP, Chow J, Chambers T, Thrasher AJ. WASp deficiency
in mice results in failure to form osteoclast sealing zones and defects in bone resorption. Blood
2004;103:3552–3561. [PubMed: 14726392]

Chellaiah M, Kizer N, Silva M, Alvarez U, Kwiatkowski D, Hruska KA. Gelsolin deficiency blocks
podosome assembly and produces increased bone mass and strength. J. Cell Biol 2000;148:665–678.
[PubMed: 10684249]

Goicoechea et al. Page 7

Eur J Cell Biol. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Chen WT, Kelly T. Seprase complexes in cellular invasiveness. Cancer Metastasis Rev 2003;22:259–
269. [PubMed: 12785000]

Curto M, McClatchey AI. Ezrin…a metastatic detERMinant? Cancer Cell 2004;5:113–114. [PubMed:
14998486]

Destaing O, Saltel F, Geminard JC, Jurdic P, Bard F. Podosomes display actin turnover and dynamic
self-organization in osteoclasts expressing actin-green fluorescent protein. Mol. Biol. Cell
2003;14:407–416. [PubMed: 12589043]

Dixon RD, Arneman DK, Rachlin AS, Sundaresan N, Costello MJ, Campbell SL, Otey CA. Palladin is
an actin crosslinking protein that uses immunoglobulin-like domains to bind filamentous actin. J.
Biol. Chem. 2008[Epub ahead of print]

Dowrick P, Kenworthy P, McCann B, Warn R. Circular ruffle formation and closure lead to
macropinocytosis in hepatocyte growth factor/scatter factor-treated cells. Eur. J. Cell Biol
1993;61:44–53. [PubMed: 8223707]

Eberle MA, Pfutzer R, Pogue-Geile KL, Bronner MP, Crispin D, Kimmey MB, Duerr RH, Kruglyak L,
Whitcomb DC, Brentnall TA. A new susceptibility locus for autosomal dominant pancreatic cancer
maps to chromosome 4q32-34. Am. J. Hum. Genet 2002;70:1044–1048. [PubMed: 11870593]

Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell
2006;126:677–689. [PubMed: 16923388]

Fritz G, Kaina B. Rho GTPases: promising cellular targets for novel anticancer drugs. Curr. Cancer Drug
Targets 2006;6:1–14. [PubMed: 16475973]

Gammill LS, Bronner-Fraser M. Genomic analysis of neural crest induction. Development
2002;129:5731–5741. [PubMed: 12421712]

Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, Seidman JG, Seidman
C, Granzier H, Labeit S, Frenneaux M, Thierfelder L. Mutations of TTN, encoding the giant muscle
filament titin, cause familial dilated cardiomyopathy. Nat. Genet 2002;30:201–204. [PubMed:
11788824]

Gerull B, Atherton J, Geupel A, Sasse-Klaassen S, Heuser A, Frenneaux M, McNabb M, Granzier H,
Labeit S, Thierfelder L. Identification of a novel frameshift mutation in the giant muscle filament
titin in a large Australian family with dilated cardiomyopathy. J. Mol. Med 2006;84:478–483.
[PubMed: 16733766]

Gilbert R, Cohen JA, Pardo S, Basu A, Fischman DA. Identification of the A-band localization domain
of myosin binding proteins C and H (MyBP-C, MyBP-H) in skeletal muscle. J. Cell Sci 1999;112:69–
79. [PubMed: 9841905]

Gluck U, Ben-Ze'ev A. Modulation of alpha-actinin levels affects cell motility and confers tumorigenicity
on 3T3 cells. J. Cell Sci 1994;107:1773–1782. [PubMed: 7983147]

Goicoechea S, Arneman D, Disanza A, Garcia-Mata R, Scita G, Otey CA. Palladin binds to Eps8 and
enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. J. Cell Sci
2006;119:3316–3324. [PubMed: 16868024]

Griffith OL, Melck A, Jones SJ, Wiseman SM. Meta-analysis and meta-review of thyroid cancer gene
expression profiling studies identifies important diagnostic biomarkers. J. Clin. Oncol 2006;24:5043–
5051. [PubMed: 17075124]

Grunewald TG, Kammerer U, Schulze E, Schindler D, Honig A, Zimmer M, Butt E. Silencing of LASP-1
influences zyxin localization, inhibits proliferation and reduces migration in breast cancer cells. Exp.
Cell Res 2006;312:974–982. [PubMed: 16430883]

Grunewald TG, Kammerer U, Kapp M, Eck M, Dietl J, Butt E, Honig A. Nuclear localization and and
cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast
carcinoma. BMC Cancer 2007a;7:198. [PubMed: 17956604]

Grunewald TG, Kammerer U, Winkler C, Schindler D, Sickmann A, Honig A, Butt E. Overexpression
of LASP-1 mediates migration and proliferation of human ovarian cancer cells and influences zyxin
localisation. Br. J. Cancer 2007b;96:296–305. [PubMed: 17211471]

Hakeda S, Endo S, Saigo K. Requirements of kettin, a giant muscle protein highly conserved in overall
structure in evolution, for normal muscle function, viability, and flight activity of Drosophila. J. Cell
Biol 2000;148:101–114. [PubMed: 10629221]

Goicoechea et al. Page 8

Eur J Cell Biol. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Hatakeyama H, Kondo T, Fujii K, Nakanishi Y, Kato H, Fukuda S, Hirohashi S. Protein clusters
associated with carcinogenesis, histological differentiation and nodal metastasis in esophageal
cancer. Proteomics 2006;6:6300–6316. [PubMed: 17133371]

Hauser MA, Horrigan SK, Salmikangas P, Torian UM, Viles KD, Dancel R, Tim RW, Taivainen A,
Bartoloni L, Gilchrist JM, Stajich JM, Gaskell PC, Gilbert JR, Vance JM, Pericak-Vance MA, Carpen
O, Westbrook CA, Speer MC. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum. Mol.
Genet 2000;9:2141–2147. [PubMed: 10958653]

Hinz B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol
2007;127:526–537. [PubMed: 17299435]

Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, Yamada Y, Chiba H, Hirohashi S. Actinin-4,
a novel actin-bundling protein associated with cell motility and cancer invasion. J. Cell Biol
1998;140:1383–1393. [PubMed: 9508771]

Jin L, Kern MJ, Otey CA, Wamhoff BR, Somlyo AV. Angiotensin II, focal adhesion kinase, and PRX1
enhance smooth muscle expression of lipoma preferred partner and its newly identified binding
partner palladin to promote cell migration. Circ. Res 2007;100:817–825. [PubMed: 17322171]

Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat. Rev. Cancer 2006;6:392–401. [PubMed: 16572188]
Krueger EW, Orth JD, Cao H, McNiven MA. A dynamin-cortactin-Arp2/3 complex mediates actin

reorganization in growth factor-stimulated cells. Mol. Biol. Cell 2003;14:1085–1096. [PubMed:
12631725]

Lambrechts A, Van Troys M, Ampe C. The actin cytoskeleton in normal and pathological cell motility.
Int. J. Biochem. Cell Biol 2004;36:1890–1909. [PubMed: 15203104]

Lin YH, Park ZY, Lin D, Brahmbhatt AA, Rio MC, Yates JR 3rd, Klemke RL. Regulation of cell
migration and survival by focal adhesion targeting of Lasp-1. J. Cell Biol 2004;165:421–432.
[PubMed: 15138294]

Linder S, Kopp P. Podosomes at a glance. J. Cell Sci 2005;118:2079–2082. [PubMed: 15890982]
Liu XS, Luo HJ, Yang H, Wang L, Kong H, Jin YE, Wang F, Gu MM, Chen Z, Lu ZY, Wang ZG. Palladin

regulates cell and extracellular matrix interaction through maintaining normal actin cytoskeleton
architecture and stabilizing beta1-integrin. J. Cell. Biochem 2007;100:1288–1300. [PubMed:
17115415]

Luo H, Liu X, Wang F, Huang Q, Shen S, Wang L, Xu G, Sun X, Kong H, Gu M, Chen S, Chen Z, Wang
Z. Disruption of palladin results in neural tube closure defects in mice. Mol. Cell. Neurosci
2005;29:507–515. [PubMed: 15950489]

Matoskova B, Wong WT, Salcini AE, Pelicci PG, Di Fiore PP. Constitutive phosphorylation of eps8 in
tumor cell lines: relevance to malignant transformation. Mol. Cell. Biol 1995;15:3805–3812.
[PubMed: 7791787]

McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA
regulate stem cell lineage commitment. Dev. Cell 2004;6:483–495. [PubMed: 15068789]

Mykkanen OM, Gronholm M, Ronty M, Lalowski M, Salmikangas P, Suila H, Carpen O.
Characterization of human palladin, a microfilament-associated protein. Mol. Biol. Cell
2001;12:3060–3073. [PubMed: 11598191]

Okagaki T, Weber FE, Fischman DA, Vaughan KT, Mikawa T, Reinach FC. The major myosin-binding
domain of skeletal muscle MyBP-C (C protein) resides in the COOH-terminal, immunoglobulin C2
motif. J. Cell Biol 1993;123:619–626. [PubMed: 8227129]

Ono K, Yu R, Mohri K, Ono S. Caenorhabditis elegans kettin, a large immunoglobulin-like repeat
protein, binds to filamentous actin and provides mechanical stability to the contractile apparatuses
in body wall muscle. Mol. Biol. Cell 2006;17:2722–2734. [PubMed: 16597697]

Orth JD, McNiven MA. Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol 2003;15:31–
39. [PubMed: 12517701]

Orth JD, McNiven MA. Get off my back! Rapid receptor internalization through circular dorsal ruffles.
Cancer Res 2006;66:11094–11096. [PubMed: 17145849]

Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil. Cytoskeleton
2004;58:104–111. [PubMed: 15083532]

Parast MM, Otey CA. Characterization of palladin, a novel protein localized to stress fibers and cell
adhesions. J. Cell Biol 2000;150:643–656. [PubMed: 10931874]

Goicoechea et al. Page 9

Eur J Cell Biol. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Pfaff M, Jurdic P. Podosomes in osteoclast-like cells: structural analysis and cooperative roles of paxillin,
proline-rich tyrosine kinase 2 (Pyk2) and integrin alphaVbeta3. J. Cell Sci 2001;114:2775–2786.
[PubMed: 11683411]

Pogue-Geile KL, Chen R, Bronner MP, Crnogorac-Jurcevic T, Moyes KW, Dowen S, Otey CA, Crispin
DA, George RD, Whitcomb DC, Brentnall TA. Palladin mutation causes familial pancreatic cancer
and suggests a new cancer mechanism. PLoS Med 2006;3:e516. [PubMed: 17194196]

Rachlin AS, Otey CA. Identification of palladin isoforms and characterization of an isoform-specific
interaction between Lasp-1 and palladin. J. Cell Sci 2006;119:995–1004. [PubMed: 16492705]

Ronty M, Taivainen A, Moza M, Otey CA, Carpen O. Molecular analysis of the interaction between
palladin and alpha-actinin. FEBS Lett 2004;566:30–34. [PubMed: 15147863]

Ronty M, Taivainen A, Moza M, Kruh GD, Ehler E, Carpen O. Involvement of palladin and alpha-actinin
in targeting of the Abl/Arg kinase adaptor ArgBP2 to the actin cytoskeleton. Exp. Cell Res
2005;310:88–98. [PubMed: 16125169]

Ronty MJ, Leivonen SK, Hinz B, Rachlin A, Otey CA, Kahari VM, Carpen OM. Isoform-specific
regulation of the actin-organizing protein palladin during TGF-beta1-induced myofibroblast
differentiation. J. Invest. Dermatol 2006;126:2387–2396. [PubMed: 16794588]

Ronty M, Taivainen A, Heiska L, Otey C, Ehler E, Song WK, Carpen O. Palladin interacts with SH3
domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling. Exp. Cell Res
2007;313:2575–2585. [PubMed: 17537434]

Rulyak SJ, Brentnall TA. Inherited pancreatic cancer: surveillance and treatment strategies for affected
families. Pancreatology 2001;1:477–485. [PubMed: 12120228]

Ryu B, Jones J, Hollingsworth MA, Hruban RH, Kern SE. Invasion-specific genes in malignancy: serial
analysis of gene expression comparisons of primary and passaged cancers. Cancer Res
2001;61:1833–1838. [PubMed: 11280733]

Salaria SN, Illei P, Sharma R, Walter KM, Klein AP, Eshleman JR, Maitra A, Schulick R, Winter J,
Ouellette MM, Goggins M, Hruban R. Palladin is overexpressed in the non-neoplastic stroma of
infiltrating ductal denocarcinomas of the pancreas, but is only rarely overexpressed in neoplastic
cells. Cancer Biol. Ther 2007;6:324–328. [PubMed: 17404500]

Salmikangas P, Mykkanen OM, Gronholm M, Heiska L, Kere J, Carpen O. Myotilin, a novel sarcomeric
protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy.
Hum. Mol. Genet 1999;8:1329–1336. [PubMed: 10369880]

Salmikangas P, van der Ven PF, Lalowski M, Taivainen A, Zhao F, Suila H, Schroder R, Lappalainen
P, Furst DO, Carpen O. Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-
links actin filaments and controls sarcomere assembly. Hum. Mol. Genet 2003;12:189–203.
[PubMed: 12499399]

Selcen D, Engel AG. Mutations in myotilin cause myofibrillar myopathy. Neurology 2004;62:1363–
1371. [PubMed: 15111675]

Suehara Y, Kondo T, Fujii K, Hasegawa T, Kawai A, Seki K, Beppu Y, Nishimura T, Kurosawa H,
Hirohashi S. Proteomic signatures corresponding to histological classification and grading of soft-
tissue sarcomas. Proteomics 2006;6:4402–4409. [PubMed: 16807943]

Swanson JA, Watts C. Macropinocytosis. Trends Cell Biol 1995;5:424–428. [PubMed: 14732047]
Varon C, Tatin F, Moreau V, Van Obberghen-Schilling E, Fernandez-Sauze S, Reuzeau E, Kramer I,

Genot E. Transforming growth factor beta induces rosettes of podosomes in primary aortic
endothelial cells. Mol. Cell. Biol 2006;26:3582–3594. [PubMed: 16611998]

Vaughan KT, Weber FE, Fischman DA. cDNA cloning and sequence comparisons of human and chicken
muscle C-protein and 86kD protein. Symp. Soc. Exp. Biol 1992;46:167–177. [PubMed: 1341033]

von Nandelstadh P, Gronholm M, Moza M, Lamberg A, Savilahti H, Carpen O. Actin-organising
properties of the muscular dystrophy protein myotilin. Exp. Cell Res 2005;310:131–139. [PubMed:
16122733]

Wall ME, Rachlin A, Otey CA, Loboa EG. Human adipose-derived adult stem cells upregulate palladin
during osteogenesis and in response to cyclic tensile strain. Am. J. Physiol. Cell Physiol
2007;293:C1532–C1538. [PubMed: 17687002]

Goicoechea et al. Page 10

Eur J Cell Biol. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, Singer RH, Segall JE, Condeelis JS.
Identification and testing of a gene expression signature of invasive carcinoma cells within primary
mammary tumors. Cancer Res 2004;64:8585–8594. [PubMed: 15574765]

Warn R, Brown D, Dowrick P, Prescott A, Warn A. Cytoskeletal changes associated with cell motility.
Symp. Soc. Exp. Biol 1993;47:325–338. [PubMed: 8165574]

Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG,
Seidman CE. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause
familial hypertrophic cardiomyopathy. Nat. Genet 1995;11:434–437. [PubMed: 7493025]

Weaver AM. Invadopodia: specialized cell structures for cancer invasion. Clin. Exp. Metastasis
2006;23:97–105. [PubMed: 16830222]

Welsch T, Endlich K, Giese T, Buchler MW, Schmidt J. Eps8 is increased in pancreatic cancer and
required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer
Lett 2007;255:205–218. [PubMed: 17537571]

Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R, Brennan C, Polyak K. Combined
cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of
breast tumor progression. Cancer Res 2006;66:4065–4078. [PubMed: 16618726]

Goicoechea et al. Page 11

Eur J Cell Biol. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Schematic representation of major palladin isoforms, palladin family members, and their
domain organization.
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Fig. 2.
Subcellular localization of palladin in A7r5 vascular smooth muscle cells. Cells grown under
normal conditions (control) (A, B), treated with PDGF (C, D) or with phorbol ester PDBu (F,
G) were stained with anti-palladin antibody and phalloidin. Control cells show pronounced
localization of palladin to stress fibers. In PDGF-treated cells, palladin and cortactin co-localize
in dorsal ruffles. In cells treated with PDBu, palladin and actin co-localize in podosomes. For
experimental details, see (Goicoechea et al., 2006).
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Fig. 3.
A working model for the role of palladin in multiple processes required for cell migration across
tissue boundaries.
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