24 research outputs found

    Impact of Laser Guide Star Fratricide on TMT MCAO System

    Get PDF
    Laser beams projected from the ground to form laser guide stars (LGS) experience scattering and absorption that reduce their intensity as they propagate through the atmosphere. Some fraction of the scattered light will be collected by the other LGS wavefront sensors and causes additional background in parts of the pupil. This cross-talk is referred to as the fratricide effect. In this paper we quantify the magnitude of four different sources of scattering/absorption and back scattering, and evaluate their impact on performance with various zenith angles and turbulence profiles for the Thirty Meter Telescope (TMT) MCAO system, NFIRAOS. The resulting wavefront error is on the order of 5 to 20 nm RMS, provided that the mean background from the fratricide can be calibrated and subtracted with an accuracy of 80%. We have also found that the impact of fratricide is a weak function of LGS asterism radius

    Impact of sodium laser guide star fratricide on multi-conjugate adaptive optics systems

    Get PDF
    Laser beams projected from the ground to form sodium layer laser guide stars (LGSs) for adaptive optics (AO) systems experience scattering and absorption that reduce their intensity as they propagate upward through the atmosphere. Some fraction of the scattered light will be collected by the other wavefront sensors and causes additional background in parts of the pupil. This cross-talk between different LGS wavefront sensors is referred to as the fratricide effect. In this paper we quantify the magnitude of four different sources of scattering/absorption and backscattering, and we evaluate their impact on performance with various zenith angles and turbulence profiles for one particular AO system. The resulting wavefront error for the Thirty Meter Telescope (TMT) multi-conjugate AO (MCAO) system, NFIRAOS, is on the order of 5 to 20 nm RMS, provided that the mean background from the fratricide effect can be calibrated and subtracted with an accuracy of 80%. We also present the impact on system performance of momentary variations in LGS signal levels due to variations in cirrus absorption or laser power, and we show that this affects the performance more than does an equal variation in the level of the fratricide

    On the Impact of ENSO Cycles and Climate Change on Telescope Sites in Northern Chile

    Full text link
    The Atacama desert stands as the most arid, non-polar, region on Earth and has accommodated a considerable portion of the world's ground-based astronomical observatories for an extended period. The comprehension of factors important for observational conditions in this region, and the potential alterations induced by the escalating impact of climate change, are, therefore, of the utmost significance. In this study, we conduct an analysis of the surface-level air temperature, water vapour density, and astronomical seeing at the European Southern Observatory (commonly known by its acronym, ESO) telescope sites in northern Chile. Our findings reveal a discernible rise in temperature across all sites during the last decade. Moreover, we establish a correlation between the air temperature and water vapour density with the El Ni\~no Southern Oscillation (ENSO) phases, wherein, the warm anomaly known as El Ni\~no (EN) corresponds to drier observing conditions, coupled with higher maximum daily temperatures favouring more challenging near-infrared observations. The outcomes of this investigation have potential implications for the enhancement of the long-term scheduling of observations at telescope sites in northern Chile, thereby aiding in better planning and allocation of resources for the astronomy community.Comment: Accepted for publication in Atmospheres (ISSN: 2073-4433) on Sept 17, 2023, 19 pages, 2 appendices, 7 Figures, 3 Table

    A Sodium laser guide star coupling efficiency measurement method

    Get PDF
    Large telescope's adaptive optics (AO) system requires one or several bright artificial laser guide stars to improve its sky coverage. The recent advent of high power sodium laser is perfect for such application. However, besides the output power, other parameters of the laser also have significant impact on the brightness of the generated sodium laser guide star mostly in non-linear relationships. When tuning and optimizing these parameters it is necessary to tune based on a laser guide star generation performance metric. Although return photon flux is widely used, variability of atmosphere and sodium layer make it difficult to compare from site to site even within short time period for the same site. A new metric, coupling efficiency is adopted in our field tests. In this paper, we will introduce our method for measuring the coupling efficiency of a 20W class pulse sodium laser for AO application during field tests that were conducted during 2013-2015

    Modeling of pulsed laser guide stars for the Thirty Meter Telescope project

    Get PDF
    The Thirty Meter Telescope (TMT) has been designed to include an adaptive optics system and associated laser guide star (LGS) facility to correct for the image distortion due to Earth's atmospheric turbulence and achieve diffraction-limited imaging. We have calculated the response of mesospheric sodium atoms to a pulsed laser that has been proposed for use in the LGS facility, including modeling of the atomic physics, the light-atom interactions, and the effect of the geomagnetic field and atomic collisions. This particular pulsed laser format is shown to provide comparable photon return to a continuous-wave (cw) laser of the same average power; both the cw and pulsed lasers have the potential to satisfy the TMT design requirements for photon return flux.Comment: 16 pages, 20 figure

    Astro2020 Science White Paper: Triggered High-Priority Observations of Dynamic Solar System Phenomena

    Get PDF
    Unexpected dynamic phenomena have surprised solar system observers in the past and have led to important discoveries about solar system workings. Observations at the initial stages of these events provide crucial information on the physical processes at work. We advocate for long-term/permanent programs on ground-based and space-based telescopes of all sizes - including Extremely Large Telescopes (ELTs) - to conduct observations of high-priority dynamic phenomena, based on a predefined set of triggering conditions. These programs will ensure that the best initial dataset of the triggering event are taken; separate additional observing programs will be required to study the temporal evolution of these phenomena. While not a comprehensive list, the following are notional examples of phenomena that are rare, that cannot be anticipated, and that provide high-impact advances to our understandings of planetary processes. Examples include: new cryovolcanic eruptions or plumes on ocean worlds; impacts on Jupiter, Saturn, Uranus, or Neptune; extreme eruptions on Io; convective superstorms on Saturn, Uranus, or Neptune; collisions within the asteroid belt or other small-body populations; discovery of an interstellar object passing through our solar system (e.g. 'Oumuamua); and responses of planetary atmospheres to major solar flares or coronal mass ejections.Comment: Astro2020 white pape

    Keck II Laser Guide Star AO System and Performance with the TOPTICA/MPBC Laser

    Get PDF
    The Keck II Laser Guide Star (LGS) Adaptive Optics (AO) System was upgraded from a dye laser to a TOPTICA/MPBC Raman-Fibre Amplification (RFA) laser in December 2015. The W. M. Keck Observatory (WMKO) has been operating its AO system with a LGS for science since 2004 using a first generation 15 W dye laser. Using the latest diode pump laser technology, Raman amplification, and a well-tuned second harmonic generator (SHG), this Next Generation Laser (NGL) is able to produce a highly stable 589 nm laser beam with the required power, wavelength and mode quality. The beam’s linear polarization and continuous wave format along with optical back pumping are designed to improve the sodium atom coupling efficiency over previously operated sodium-wavelength lasers. The efficiency and operability of the new laser has also been improved by reducing its required input power and cooling, size, and the manpower to operate and maintain it. The new laser has been implemented on the telescope’s elevation ring with its electronics installed on a new Nasmyth sub-platform, with the capacity to support up to three laser systems for future upgrades. The laser is projected from behind the telescope’s secondary mirror using the recently implemented center launch system (CLS) to reduce LGS spot size. We will present the new laser system and its performance with respect to power, stability, wavelength, spot size, optical repumping, polarization, efficiency, and its return with respect to pointing alignment to the magnetic field. Preliminary LGSAO performance is presented with the system returning to science operations. We will also provide an update on current and future upgrades at the WMKO
    corecore